Зарядное устройство из компьютерного бп. Зарядное устройство для автомобильного аккумулятора из блока питания компьютера

Здравствуйте, дорогие дамы и уважаемые господа!

На этой странице я вкратце расскажу Вам о том, как своими руками переделать блок питания персонального компьютера в зарядное устройство для автомобильных (и не только) аккумуляторов.

Зарядное устройство для автомобильных аккумуляторов должно обладать следующим свойством: максимальное напряжение, подводимое к аккумулятору - не более 14.4В, максимальный зарядный ток - определяется возможностями самого устройства. Именно такой способ зарядки реализуется на борту автомобиля (от генератора) в штатном режиме работы электросистемы автомобиля.

Однако, в отличие от материалов из этой статьи, мною была избрана концепция максимальной простоты доработок без использования самодельных печатных плат, транзисторов и прочих "наворотов".

Блок питания для переделки подарил мне друг, сам он его нашел где-то у себя на работе. Из надписи на этикетке можно было разобрать, что полная мощность данного блока питания составляет 230Вт, но по каналу 12В можно потреблять ток не более 8А. Вскрыв этот блок питания я обнаружил, что в нем нет микросхемы с цифрами "494" (как то было описано в предлагаемой выше статье), а основой его является микросхема UC3843. Однако, эта микросхема включена не по типовой схеме и используется только как генератор импульсов и драйвер силового транзистора с функцией защиты от сверхтоков, а функции регулятора напряжения на выходных каналах блока питания возложены на микросхему TL431, установленную на дополнительной плате:

На этой же дополнительной плате установлен подстроечный резистор, позволяющий отрегулировать выходное напряжение в узком диапазоне.

Итак, для переделки этого блока питания в зарядное устройство, сперва необходимо убрать все лишнее. Лишним является:

1. Переключатель 220 / 110В с его проводами. Эти провода просто нужно отпаять от платы. При этом наш блок всегда будет работать от напряжения 220В, что устраняет опасность его сжечь при случайном переключении этого переключателя в положение 110В;

2. Все выходные провода, за исключением одного пучка черных проводов (в пучке 4 провода) - это 0В или "общий", и одного пучка желтых проводов (в пучке 2 провода) - это "+".

Теперь необходимо сделать так, чтобы наш блок работал всегда, если включен в сеть (по умолчанию он работает только если замкнуть нужные провода в выходном пучке проводов), а также устранить действие защиты по перенапряжению, которая отключает блок, если выходное напряжение станет ВЫШЕ некоторого заданного предела. Сделать это необходимо потому, что нам нужно получить на выходе 14.4В (вместо 12), что воспринимается встроенными защитами блока как перенапряжение и он отключается.

Как оказалось, и сигнал "включение-отключение", и сигнал действия защиты по перенапряжению проходит через один и тот же оптрон, которых всего три - они связывают выходную (низковольтную) и входную (высоковольтную) части блока питания. Итак, чтобы блок всегда работал и был нечувствителен к перенапряжениям на выходе, необходимо замкнуть контакты нужного оптрона перемычкой из припоя (т. е. состояние этого оптрона будет "всегда включен"):

Теперь блок питания будет работать всегда, когда он подключен к сети и независимо от того, какое напряжение мы сделаем у него на выходе.

Далее следует установить на выходе блока, там где раньше было 12В, выходное напряжение, равное 14.4В (на холостом ходу). Поскольку только с помощью вращения подстроечного резистора, установленного на дополнительной плате блока питания, не удается установить на выходе 14.4В (он позволяет сделать только что-то где-то около 13В), необходимо заменить резистор, включенный последовательно с подстроечным, на резистор чуть меньшего номинала, а именно 2.7кОм:

Теперь диапазон настройки выходного напряжения сместился в большую сторону и стало возможным установить на выходе 14.4В.

Затем, необходимо удалить транзистор, находящийся радом с микросхемой TL431. Назначение этого транзистора неизвестно, но включен он так, что имеет возможность препятствовать работе микросхемы TL431, т. е. препятствовать стабилизации выходного напряжения на заданном уровне. Этот транзистор находился вот на этом месте:

Далее, чтобы выходное напряжение было более стабильным на холостом ходу, необходимо добавить небольшую нагрузку на выход блока по каналу +12В (который у нас будет +14.4В), и по каналу +5В (который у нас не используется). В качестве нагрузки по каналу +12В (+14.4) применен резистор 200 Ом 2Вт, а по каналу +5В - резистор 68 Ом 0.5Вт (на фото не виден, т. к. находится за дополнительной платой):

Только после установки этих резисторов, следует отрегулировать выходное напряжением на холостом ходу (без нагрузки) на уровне 14.4В.

Теперь необходимо ограничить выходной ток на допустимом для данного блока питания уровне (т. е. порядка 8А). Достигается это путем увеличения номинала резистора в первичной цепи силового трансформатора, используемого как датчик перегрузки. Для ограничения выходного тока на уровне 8...10А этот резистор необходимо заменить на резистор 0.47Ом 1Вт:

После такой замены выходной ток не превысит 8...10А даже если мы замкнем накоротко выходные провода.

Наконец, необходимо добавить часть схемы, которая будет защищать блок от подключения аккумулятора обратной полярностью (это единственная "самодельная" часть схемы). Для этого потребуется обычное автомобильное реле на 12В (с четырьмя контактами) и два диода на ток 1А (я использовал диоды 1N4007). Кроме того, для индикации того факта, что аккумулятор подключен и заряжается, потребуется светодиод в корпусе для установки на панель (зеленый) и резистор 1кОм 0.5Вт. Схема должна быть такая:

Работает следующим образом: когда к выходу подключается аккумулятор правильной полярностью, реле срабатывает за счет энергии, оставшейся в аккумуляторе, а после его срабатывания аккумулятор начинает заряжатся от блока питания через замкнутый контакт этого реле, о чем сигнализирует зажженный светодиод. Диод, включенный параллельно катушке реле, нужен для предотвращения перенапряжений на этой катушке при ее отключении, возникающих за счет ЭДС самоиндукции.

К недостаткам полученного зарядного устройства следует отнести отсутствие какой-либо индикации степени заряженности аккумулятора, что вносит неясность - заряжен аккумулятор или нет? Однако, на практике установлено, что за сутки (24 часа) обычный автомобильный аккумулятор емкостью 55А·ч успевает полностью зарядится.

К достоинствам можно отнести то, что с данным зарядным устройством аккумулятор может сколь угодно долго "стоять на зарядке" и ничего страшного при этом не произойдет - аккумулятор будет заряжен, но не "перезарядится" и не испортится.

Вы можете самостоятельно сделать зарядное устройство из обычного блока питания компьютера.

Какими свойствами оно будет обладать: напряжение, на аккумулятор будет 14 В,а вот зарядный ток будет зависеть от устройства. Этот способ зарядки предусмотрен генератором автомобиля в стандартном режиме работы.

Отличие этой статьи от иных аналогичных в том, что сборка изделия довольно проста. Вам не нужно делать самодельные платы, и навороченные транзисторы.

Собственно что нам нужно:
1) обычный блок питания от компьютера примерно на 230 вт,то есть канал 12 В потребляет 8 А.
2) автомобильное реле на 12В (с четырьмя контактами) и два диода на ток 1А
3) несколько резисторов разных мощностей (зависит от модели самого блока питания)

После вскрытия этого блока питания автор обнаружил, что в его основе микросхема UC3843. Эта микросхема используется как генератор импульсов и для защиты от сверхтоков. Регулятор напряжения на каналах выхода представлен микросхемой TL431:


Там же был установлен подстроечный резистор, служащий для регуляции выходного напряжения в определенном диапазоне.

Чтобы сделать из этого блока питания зарядное устройство, нам нужно будет убрать ненужные детали.

Отпаиваем от платы переключатель 220\110В и все его провода.
Он нам не нужен, ведь наш блок питания будет всегда работать от напряжения 220.

Затем убираем все провода на выходе, кроме пучка черных проводов (там 4 провода) - это 0В или "общий", и пучка желтых проводов (в пучке 2 провода) - это "+".

Потом сделаем так, чтобы блок работал постоянно при подключении к сети. Стандартно он работает, только если замкнуты нужные провода в тех пучках. Еще необходимо убрать защиту от перенапряжения, так как она отключает блок если напряжение станет выше определенного значения.

Всему причиной то, что нам нужно 14.4В на выходе устройства а не стандартные 12.

Оказалось, что сигналы включения и защиты функционируют через один оптрон,а их всего три.
Для того, чтобы зарядка работа всегда придется замкнуть контакты этого оптрона перемычкой:


После этого действия блок питания будет работать независимо от напряжения в сети.

Следующим шагом будет установка выходного напряжения в 14.4В вместо 12. Для этого пришлось заменить резистор, который был включен последовательно с подстроечным, на резистор 2.7кОм:


Теперь предстоит демонтировать транзистор, который рядом с TL431. (зачем он неизвестно, но блокирует работу микросхемы) Этот транзистор находился вот на этом месте:


Для стабилизации, на выход блока питания добавляем нагрузку в виде резистора на 200 Ом 2Вт(14.4в) а для канала 5В резистор в 68 Ом:


После установки этих резисторов можно приступать к регулированию выходного напряжения без нагрузки на 14.4В. Чтобы ограничить выходной ток на 8А (допустимое значение для нашего блока) нужно увеличить мощность резистора в цепи силового трансформатора, который используется как датчик перегрузки.

Устанавливаем резистор на 47Ом 1 вт вместо стандартного.


И все же не помешает добавить защиту от подключения обратной полярностью. Берем простое автомобильное реле на 12В и два диода 1N4007. Так же чтобы видеть режим работы прибора, неплохо было бы сделать еще 1 диод и резистор 1кОм 0.5Вт.

Схема будет таковой:


Система работы: при подключении аккумулятора верной полярностью, реле включается за счет оставшегося в аккумуляторе заряда. После срабатывания реле идет зарядка аккумулятора от блока питания через замкнутый контакт реле,это нам и будет показывать внешний диод.

Диод, который подключен параллельно катушке реле, служит для защиты от перенапряжения при ее отключении, возникающих за счет ЭДС самоиндукции.

Чтобы приклеить реле - лучше использовать силиконовый герметик, так как он останется эластичным даже после засыхания.


Затем припаиваются провода к аккумулятору. Лучше взять гибкие, с сечением 2.5мм2, длинной около метра. Для подключения к аккумулятору используются "крокодилы" на концах проводов. Чтобы закрепить их в корпусе автор использовал пару нейлоновых стяжек(он их продел в просверленные в радиаторе отверстия)

У кого есть свой автомобиль , тот неоднократно сталкивался с проблемой найти источник для зарядки аккумулятора. Вроде бы и купить его не проблематично, но зачем, если зарядку можно сделать из компьютерного блока питания, который наверняка завалялся у вас дома или у друзей.

Посмотрите видео и, вы узнаете, как можно быстро и просто сделать зарядное из блока питания

Преимущество самодельной зарядки в том, что она очень лёгкая и работает в автоматическом режиме. Может заряжать токами 4 или 5 милиампер. Емкость аккумулятора самая большая – это 75 ампер часов и меньше. Заряжает наше устройство на ура. Устройство полностью работает в автоматическом режиме, есть защита от переплюсовки и есть защита от короткого замыкания.


На корпусе нам необходимо сделать выемку для стандартного сетевого провода и обязательно выключатель.

С обратной стороны корпуса у нас идут провода. Провода идут с клеммами или зажимами, чтобы можно было присоединять их к зарядке или аккумулятору.

Также не забываем подключить и вынести на корпус индикатор включения. Если лампочка будет гореть – это значит, что устройство работает и выдает напряжение.


Наше устройство выдает 14 вольт, это можно проверить на специальном приборе, просто подключив к нему наш аккумулятор.

Если вы хотите узнать, сколько дает ампер тока такое устройство, то подсоедините его к аккумулятору и проверьте все на амперметре. Если аккумулятор будет полностью разряженным – вы получите 5 ампер, когда аккумулятор зарядиться у нас будет выходить только 3 амперы.


Переделок в этой зарядке не много, максимум займет 2 часа вашего времени, но только если этот блок питания сделан на микросхеме ТЛ 494.

Компьютеры не могут работать без электроэнергии. Чтобы их зарядить, используются специальные устройства, называемые источниками питания. Они получают напряжение переменного тока из сети и преобразуют его в постоянный ток. Устройства могут выдавать огромное количество энергии в небольшом форм-факторе, обладают встроенной защитой от перегрузки. Выдаваемые параметры у них невероятно стабильны, а качество постоянного тока обеспечено даже при высоких нагрузках. Когда есть лишний такой аппарат, разумно его использовать для многих бытовых задач, например, переделав в зарядное устройство из блока питания компьютера.

Блок имеет форму металлической коробки шириной 150 мм х 86 мм х 140 мм. Стандартно он монтируется внутри корпуса ПК с помощью четырех винтов, переключателя и розетки. Такая конструкция позволяет воздуху поступать в охлаждающий вентилятор блока питания (БП). В некоторых случаях установлен переключатель селектора напряжения, позволяющий пользователю выбирать показатели. Например, в Соединенных Штатах имеется внутренний источник питания, работающий с номинальным напряжением 120 вольт.

БП компьютера состоит из нескольких компонентов внутри: катушки, конденсаторов, электронной платы для регулирования тока и вентилятора для охлаждения. Последний является основной причиной отказа для источников питания (ИП), что надо учитывать при монтаже зарядного устройства из блока питания компьютера atx.

Типы электропитания персонального компьютера

ИП имеют определенную мощность, указанную в ваттах. Стандартный блок, как правило, способен обеспечивать около 350 Вт. Чем больше установленных на компьютере компонентов: жестких дисков, CD / DVD-приводов, ленточных накопителей, вентиляторов, тем больше энергии требуется от источника питания.

Специалисты рекомендуют использовать блок питания, который обеспечивает больше мощности, чем требуется компьютеру, поскольку он будет работать в режиме постоянной «недогрузки», что увеличит срок службы машины из-за уменьшения теплового воздействия на его внутренние компоненты.

Существует 3 типа ИП:

  1. AT Power Supply — употребляется на очень старых ПК.
  2. Блок питания ATX — все еще применяется на некоторых ПК.
  3. Электропитание ATX-2 - обычно используется сегодня.

Параметры БП, которые можно использовать при создании зарядного устройства из блока питания компьютера:

  1. AT / ATX / ATX-2:+3.3 В.
  2. ATX / ATX-2:+5 В.
  3. AT / ATX / ATX-2:-5 В.
  4. AT / ATX / ATX-2:+5 В.
  5. ATX / ATX-2:+12 В.
  6. AT / ATX / ATX-2:-12 В.

Разъемы материнской платы

В ИП есть много разных разъемов питания. Они разработаны таким образом, что при их установке нельзя ошибиться. Чтобы сделать зарядное устройство из блока питания компьютера, пользователю не нужно будет долго выбирать правильный кабель, так как он просто не поместится в разъеме.

Виды разъемов:

  1. P1 (разъем для подключения к ПК / ATX). Основная задача блока питания (PSU) - предоставить мощность материнской плате. Это делается через 20-контактный или 24-контактный разъемы. 24-контактный кабель совместим с 20-контактной материнской платой.
  2. P4 (разъем EPS).Раньше выводы материнской платы были недостаточны для обеспечения мощностью процессора. С разгонным графическим процессором, достигающим 200 Вт, была создана возможность обеспечить питание непосредственно процессору. В настоящее время это P4 или EPS, которые обеспечивают достаточную мощность процессора. Поэтому переделка блока питания компьютера в зарядное устройство экономически обоснована.
  3. Разъем PCI-E (6-контактный разъем 6 + 2). Материнская плата может обеспечить максимум 75 Вт через слот интерфейса PCI-E. Более быстрая выделенная видеокарта требует гораздо большей мощности. Для решения этой проблемы был введен разъем PCI-E.

Дешевые материнские платы оснащены 4-контактным разъемом. Более дорогие «разгонные» материнские платы имеют 8-контактные разъемы. Дополнительные обеспечивают излишнюю мощность процессора при разгоне.

Большинство блоков питания снабжены двумя кабелями: 4-контактными и 8-контактными. Нужно использовать только один из этих кабелей. Также можно разделить 8-контактный кабель на два сегмента, чтобы обеспечить обратную совместимость с более дешевыми материнскими платами.

Левые 2 контакта 8-контактного разъема (6+2) справа отсоединены для обеспечения обратной совместимости с 6-контактными графическими картами. 6-контактный разъем PCI-E может поставить дополнительный 75Вт за кабель. Если графическая карта содержит один 6-контактный разъем, он может составлять до 150 Вт (75 Вт от материнской платы + 75 Вт от кабеля).

Для более дорогих графических карт требуется 8-контактный (6+2) разъем PCI-E. С помощью 8 контактов этот разъем может обеспечивать до 150 Вт на кабель. Видеокарта с одним 8-контактным разъемом может составлять до 225 Вт (75 Вт от материнской платы + 150 Вт от кабеля).

Molex, 4-контактный периферийный разъем, используют при создании зарядного устройства из блока питания компьютера. Эти контакты работают очень долго, могут поставлять 5V (красный) или 12V (желтый) на периферийные устройства. В прошлом эти соединения часто использовались для подключения жестких дисков, CD-ROM-плееров и т. д.

Даже видеокарты Geforce 7800 GS оснащаются Molex. Однако их потребляемая мощность ограничена, поэтому в настоящее время бо́льшая часть их была заменена кабелями PCI-E и Все, что осталось, это вентиляторы с питанием.

Соединитель вспомогательного оборудования

Разъем SATA - современная замена устаревшего Molex. Все современные DVD-плееры, жесткие диски и SSD работают от мощности SATA. Разъем Mini-Molex / Floppy полностью устаревший, но некоторые БП все еще поставляются с разъемом mini-molex. Они были использованы для питания дисководов гибких дисков до 1,44 МБ данных. В основном, они сегодня заменены USB-накопителем.

Адаптер Molex-PCI-E 6-контактный для питания видеокарты.

Используя адаптер 2x-Molex-1x PCI-E 6-контактный, предварительно нужно убедиться, что подключаются оба "Молекса" к различным кабельным напряжениям. Это снижает риск перегрузки источника питания. С введением ATX12 V2.0 были внесены изменения в систему с 24-контактным разъемом. В старых ATX12V (1.0, 1.2, 1.2 и 1.3) использовался 20-контактный разъем.

Всего есть 12 версий стандарта ATX, но они настолько похожи, что пользователю не нужно беспокоиться о совместимости во время монтажа зарядного устройства из блока питания компьютера. Для обеспечения большинство современных источников позволяют отсоединить последние 4 контакта основного разъема. Также возможно создать передовую совместимость с помощью адаптера.

Напряжения питания компьютера

В компьютере требуется три типа постоянного напряжения. 12 вольт необходимо для подачи напряжения на материнскую плату, графические карты, для вентиляторов, процессора. Для USB-портов требуется 5 вольт, а для самого ЦП используется 3,3 вольта. 12 вольт также применимы для некоторых «умных» вентиляторов. Электронная плата в блоке питания отвечает за пересылку преобразуемого электричества через специальные кабельные наборы для питания устройств внутри компьютера. С помощью перечисленных выше компонентов переменное напряжение преобразуется в чистый постоянный ток.

Почти половина работы, выполняемой блоком питания, осуществляется с помощью конденсаторов. Они хранят энергию, которая будет использоваться для непрерывного рабочего потока. Изготавливая из блока питания компьютера, пользователь должен быть осторожным. Даже если компьютер отключен, есть вероятность того, что электричество будет храниться внутри блока питания в конденсаторах, даже через несколько дней после отключения.

Цветные коды кабельных наборов

Внутри источников питания пользователь видит много кабельных наборов, выходящих с различными разъемами и разными номерами. Цветовые коды кабелей питания:

  1. Черные, используются для обеспечения тока. Каждый другой цвет должен быть соединен с черным проводом.
  2. Желтый: + 12В.
  3. Красный: + 5 В.
  4. Синий: —12В.
  5. Белый: —5В.
  6. Оранжевый: 3.3В.
  7. Зеленый, контрольный провод для проверки напряжения постоянного тока.
  8. Фиолетовый: + 5 В режим ожидания.

Выходные напряжения источника питания компьютера можно измерить с помощью надлежащего мультиметра. Но из-за более высокого риска короткого замыкания пользователь должен всегда подключать черный кабель с черным на мультиметре.

Вилка силового провода

Провод жесткого диска (независимо от того, является ли это IDE или SATA) имеет четыре жилы, прикрепленных к разъему: желтую, две черных подряд, и красную. На жестком диске одновременно используются как 12V, так и 5V. 12V питает движущиеся механические детали, а 5V подает электронные схемы. Таким образом, все эти кабельные комплекты оснащены кабелями 12V и 5V одновременно.

Электрические разъемы на материнской плате для процессоров или вентиляторов шасси имеют четыре ножки, поддерживающие материнскую плату для вентиляторов 12 В или 5 В. Помимо черных, желтых и красных, другие цветные провода можно увидеть только в главном разъеме, который напрямую переходит в розетку материнской платы. Это фиолетовые, белые или оранжевые кабели, которые не используются потребителями для подключения периферийных устройств.

Если вы хотите сделать автомобильное зарядное устройство из блока питания компьютера, нужно протестировать его. Вам понадобятся скрепка и около двух минут времени. Если понадобится источник питания обратно подключить к материнской плате, просто нужно удалить скрепку. Никаких изменений от использования скрепки в нем не произойдет.

Порядок действий:

  • Найти зеленый провод в дереве кабелей из блока питания.
  • Следовать за ним до 20 или 24-контактного разъема ATX. Зеленый провод в некотором смысле «приемник», который нужен для снабжения энергией блока питания. Между ним есть два черных провода заземления.
  • Поместить скрепку в штырь с зеленым проводом.
  • Другой конец поместить в один из двух черных проводов заземления рядом с зеленым. Не важно, какой из них будет работать.

Хотя скрепка не ударит большим током, не рекомендуется прикасаться к ее металлической части, когда она находится под напряжением. Если нужно оставить скрепку на неопределенный срок, необходимо замотать ее изолентой.

Если вы начинаете делать своими руками зарядное устройство из блока питания компьютера, позаботьтесь о безопасности работ. Источник угрозы — это конденсаторы, которые несут в себе остаточный заряд электричества, способный вызвать значительную боль и ожоги. Поэтому нужно не только убедиться, что ИП надежно отключен, но и надеть изоляционные перчатки.

После открытия БП, делают оценку рабочего пространства и убеждаются, что не будет никаких проблем с расчисткой проводов.

Предварительно продумывают конструкцию источника, отмеривая карандашом, где будут находиться отверстия, чтобы отрезать провода необходимой длины.

Выполняют сортировку проводов. При этом будут необходимы: черный, красный, оранжевый, желтый и зеленый. Остальные являются лишними, поэтому их можно обрезать на монтажной плате. Зеленый говорит о включении питания после режима ожидания. Он просто припаивается к заземляющему черному проводу, что обеспечит включение БП без компьютера. Далее нужно подключить провода к 4 большим зажимам по одному для каждого набора цветов.

После этого требуется сгруппировать 4-проводные цвета вместе и отрезать их на необходимую длину, снять изоляцию и соединить в один конец. Перед сверлением отверстий нужно позаботиться о печатной плате шасси, чтобы она не была загрязнена металлическими стружками.

В большинстве БП нельзя полностью удалить печатную плату с шасси. В таком случае ее нужно аккуратно обернуть пластиковым пакетом. Закончив сверление, требуется обработать все шероховатые пятна и протереть шасси тканью от мусора и налета. Затем установить фиксирующие стойки, используя небольшую отвертку и клеммы, закрепив их с помощью плоскогубцев. После этого закрыть блок питания и обозначить маркером напряжение на панели.

Зарядка аккумулятора автомобиля от старого ПК

Это устройство поможет автолюбителю в сложной ситуации, когда нужно срочно зарядить аккумулятор автомобиля, не имея стандартного устройства, а используя лишь обычный блок питания ПК. Специалисты не рекомендуют постоянно пользоваться зарядным устройством авто из блока питания компьютера, так как напряжение 12 В немного не дотягивает до необходимого при зарядке аккумулятора. Оно должно быть 13 В, но как аварийный вариант его использовать можно. Для усиления напряжения там, где раньше было 12В, нужно поменять резистор на 2.7кОм на подстроечном резисторе, установленном на дополнительной плате БП.

Поскольку источники питания имеют конденсаторы, которые сохраняют электроэнергию в течение длительного времени, желательно их разрядить с использованием лампы накаливания 60 Вт. Чтобы прикрепить лампу, используйте два конца провода для подключения к выводам крышки. Лампа подсветки медленно погаснет, разрядив крышку. Замыкание клемм не рекомендуется, так как это приведет к большой искре и может повредить дорожки печатной платы.

Процедура изготовления своими руками зарядного устройства из блока питания компьютера начинается со снятия верхней панели блока питания. Если на верхней панели установлен вентилятор 120 мм, отсоедините 2-контактный разъем от печатной платы и снимите панель. Требуется обрезать выходные кабели от источника питания с помощью плоскогубцев. Не стоит их выбрасывать, лучше использовать повторно для нестандартных заданий. Для каждого связующего поста оставьте не более 4-5 кабелей. Остальные могут быть обрезаны на печатной плате.

Соединяются провода одного цвета и закрепляются, используя кабельные стяжки. Зеленый кабель используется для включения постоянного тока ИП. Его припаивают к клеммам GND или подключают к черному проводу из пучка. Далее отмеряют центр отверстий на верхней крышке, где должны быть закреплены фиксирующие стойки. Нужно быть особенно внимательным, если на верхней панели установлен вентилятор, а зазор между краем вентилятора и ИП мал для фиксирующих штырей. В таком случае после отметки центральных точек нужно снять вентилятор.

После этого нужно прикрепить фиксирующие стойки к верхней панели в порядке: GND, +3,3 В, +5 В, +12 В. Используя стриппер для проводов, удаляется изоляция кабелей каждого пучка, припаиваются соединения. Тепловым пистолетом обрабатывают рукава над обжимными соединениями, после чего вставляют выступы в соединительные штыри и затягивают вторую гайку.

Далее нужно вернуть вентилятор на место, подключить 2-контактный разъем к гнезду на печатной плате, вставить панель обратно в устройство, что может потребовать некоторых усилий из-за связки кабелей на перекладинах и закрыть.

Зарядное устройство для шуруповерта

Если шуруповерт имеет напряжение 12В, то пользователю повезло. Он может сделать источник питания для зарядного устройство без особых переделок. Понадобится используемый или новый БП компьютера. В нем есть несколько напряжений, но нужно 12В. Есть много проводов разных цветов. Понадобятся желтые, которые выдают 12В. Перед началом работ пользователь должен убедится, что ИП отключен от источника энергии и не имеет остаточного напряжения в конденсаторах.

Теперь можно начинать переделывать блок питания компьютера в зарядное устройство. Для этого нужно желтые провода подключить к разъему. Это будет выход 12В. Сделать то же самое для черных проводов. Это разъемы, в которые будет подключаться зарядное устройство. В блоке напряжение 12В не является первичным, поэтому подключается резистор к красному проводу 5В. Далее нужно соединить серый и один черный провод вместе. Это сигнал, который говорит об энергоснабжении. Цвет этого провода может варьироваться, поэтому нужно убедиться, что это сигнал PS-ON. Это должно быть написано на наклейке блока питания.

После включения переключателя БП должен запускаться, вентилятор вращаться, а лампочка загораться. Проверив разъемы с помощью мультиметра, нужно убедиться, что блок выдает 12 В. Если это так, то зарядное устройство шуруповерта из блока питания компьютера функционирует правильно.

На самом деле вариантов приспособления блока питания под собственные нужды множество. Любители поэкспериментировать с удовольствием делятся своим опытом. Предлагаем несколько хороших советов.

Пользователям не стоит бояться модернизировать коробку блока: можно добавить светодиоды, наклейки или все, что нужно для совершенствования. Разбирая провода, нужно убедиться, что используется блок питания ATX. Если это AT или более старый источник питания, у него, скорее всего, будет другая цветовая схема для проводов. Если у пользователя нет данных об этих проводах, ему не стоить переоборудовать блок, так как схема может быть собрана неправильно, что приведет к аварии.

Некоторые современные источники питания имеют провод связи, который должен быть подключен к источнику питания для его работы. Серый провод подключается к оранжевому, а розовый - к красному. Силовой резистор с высокой мощностью может стать горячим. В этом случае нужно использовать в конструкции радиатор для охлаждения.

Введение.

Скопилось у меня много компьютерных БП, отремонтированных в качестве тренировки этого процесса, но для современных компьютеров уже слабоватых. Что с ними делать?

Решил несколько переделать в ЗУ для зарядки 12В автомобильных аккумуляторов.

Вариант 1.

Итак: начали.

Первым мне подвернулся под руку Linkworld LPT2-20. У этого зверька оказался ШИМ на м/с Linkworld LPG-899. Посмотрел даташит, схему БП и понял – элементарно!

Что оказалось просто шикарно – она питается от 5VSB, т.е наши переделки никак не повлияют на режим её работы. Ноги 1,2,3 используются для контроля выходных напряжений 3,3В, 5В и 12В соответственно в пределах допустимых отклонений. 4-я нога тоже является входом защиты и используется для защиты от отклонений -5В, -12В. Нам все эти защиты не просто не нужны, а даже мешают. Поэтому их надо отключить.

По пунктам:

Стадия разрушения на этом окончена, пора переходить к созиданию.


По большому счету ЗУ у нас уже готово, но в нем нет ограничения зарядного тока (хотя защита от КЗ работает). Для того чтобы ЗУ не давало на аккумулятор столько «сколько влезет» – добавляем цепь на VT1, R5, C1, R8, R9, R10. Как она работает? Очень просто. Пока падение напряжения на R8 подаваемое на базу VT1 через делитель R9, R10 не превышает порог открывания транзистора – он закрыт и не влияет на работу устройства. А вот когда он начинает открываться, то к делителю на R4, R6, R12 добавляется ветка из R5 и транзистора VT1, меняя тем самым его параметры. Это приводит к падению напряжения на выходе устройства и, как следствие, к падению зарядного тока. При указанных номиналах, ограничение начинает работать примерно с 5А, плавно понижая выходное напряжение с ростом тока нагрузки. Настоятельно рекомендую эту цепь не выбрасывать из схемы, иначе, при сильно разряженном аккумуляторе ток может быть настолько большим, что сработает штатная защита, или вылетят силовые транзисторы, или шоттки. И зарядить свой аккумулятор вы не сможете, хотя сообразительные автолюбители догадаются на первом этапе включить автомобильную лампу между ЗУ и аккумулятором чтобы ограничить зарядный ток.

VT2, R11, R7 и HL1 занимается «интуитивной» индикацией тока заряда. Чем ярче горит HL1 – тем больше ток. Можно не собирать, если нет желания. Транзистор VT2 – должен быть обязательно германиевый, потому что падение напряжения на переходе Б-Э у него значительно меньше, чем у кремниевого. А значит, и открываться он будет раньше чем VT1.

Цепь из F1 и VD1, VD2 обеспечивает простейшую защиту от переполюсовки. Очень рекомендую сделать её или собрать другую на реле или чём-нибудь ещё. Вариантов в сети можно найти много.

А теперь о том, зачем нужно оставить канал 5В. Для вентилятора 14,4В многовато, особенно с учетом того что при такой нагрузке БП не греется вообще, ну кроме сборки выпрямителя, она немного греется. Поэтому, мы подключаем его к бывшему каналу 5В (сейчас там - около 6В), и он тихо и нешумно выполняет свою работу. Естественно, с питанием вентилятора есть варианты: стабилизатор, резистор и т.п. В дальнейшем некоторые из них мы увидим.

Всю схему я свободно смонтировал на освобожденном от ненужных деталей месте, не делая никаких плат, с минимумом дополнительных соединений. Выглядело это всё после сборки так:

В итоге, что мы имеем?

Получилось ЗУ с ограничением максимального зарядного тока (достигается уменьшением подаваемого на аккумулятор напряжения при превышении порога в 5А) и стабилизированным максимальным напряжением на уровне 14,4В, что соответствует напряжению в бортовой сети автомобиля. Поэтому, его можно смело использовать, не отключая аккумулятор от бортовой электроники. Это зарядное устройство можно смело оставлять без присмотра на ночь, батарея никогда не перегреется. К тому же оно почти бесшумное и очень лёгкое.

Если вам максимального тока в 5-7А маловато (ваш аккумулятор бывает часто сильно разряжен), можно легко увеличить его до 7-10А, заменив резистор R8 на 0,1Ом 5Вт. Во втором БП с более мощной сборкой по 12В именно так я и сделал:

Вариант 2.

Следующим подопытным у нас будет БП Sparkman SM-250W реализованный на широко известном и горячо любимом ШИМ TL494 (КА7500).

Переделка такого БП ещё проще, чем на LPG-899, так как в ШИМ TL494 нет никаких встроенных защит по напряжениям каналов, зато есть второй компаратор ошибки, который зачастую свободен (как и в данном случае). Схема оказалась практически один к одному со схемой PowerMaster. Её я и взял за основу:

План действий:


Это был, пожалуй, самый экономичный вариант. Выпаянных деталей у вас останется гораздо больше чем затраченных J. Особенно если учесть что сборка SBL1040CT была извлечена из канала 5В, а туда были впаяны диоды, в свою очередь добытые, с канала -5В. Все затраты состояли из крокодилов, светодиода и предохранителя. Ну, можно ещё ножки приделать для красоты и удобства.

Вот плата в полном сборе:

Если вас пугают манипуляции с 15 и 16-й ногами ШИМ, подбор шунта с сопротивлением в 0,005Ом, устранение возможных сверчков, можно переделать БП на TL494 и несколько другим способом.

Вариант 3.

Итак: наша следующая «жертва» - БП Sparkman SM-300W. Схема абсолютно аналогична варианту 2, но имеет на борту более мощную выпрямительную сборку по 12В каналу, более солидные радиаторы. Значит - с него мы возьмем больше, например 10А.

Этот вариант однозначен для тех схем, где ноги 15 и 16 ШИМ уже задействованы и вы не хотите разбираться – зачем и как это можно переделать. И вполне пригоден для остальных случаев.

Повторим в точности пункты 1 и 2 из второго варианта.

Канал 5В, в данном случае, я демонтировал полностью.

Чтобы не пугать вентилятор напряжением в 14,4В - собран узел на VT2, R9, VD3, HL1. Он не позволяет превышать напряжение на вентиляторе более чем 12-13В. Ток через VT2 небольшой, нагрев транзистора тоже, можно обойтись без радиатора.

С принципом действия защиты от переполюсовки и схемы ограничителя зарядного тока и вы уже знакомы, но вот место его подключения здесь - иное.

Управляющий сигнал с VT1 через R4 заведен на 4-ю ногу KA7500B (аналог TL494). На схеме не отображено, но там должен был остаться от оригинальной схемы резистор в 10кОм с 4-й ноги на землю, его трогать не надо .

Действует это ограничение так. При небольших токах нагрузки транзистор VT1 закрыт и на работу схемы никак не влияет. На 4-й ноге напряжение отсутствует, так как она посажена на землю через резистор. А вот когда ток нагрузки растет, падение напряжения на R6 и R7 соответственно тоже растет, транзистор VT1 начинает открываться и совместно с R4 и резистором на землю они образуют делитель напряжения. Напряжение на 4-й ноге возрастает, а так как потенциал на этой ноге, согласно описанию TL494, непосредственно влияет на максимальное время открытия силовых транзисторов, то ток в нагрузке уже не растет. При указанных номиналах порог ограничения составил 9,5-10А. Основное отличие от ограничения в варианте 1, несмотря на внешнюю похожесть, резкая характеристика ограничения, т.е. при достижении порога срабатывания, напряжение на выходе спадает быстро.

Вот этот вариант в готовом виде:

Кстати, эти зарядки можно использовать и в качестве источника питания для автомагнитолы, переноски на 12В и других автомобильных устройств. Напряжение стабилизировано, максимальный ток ограничен, спалить что-нибудь будет не так то просто.

Вот готовая продукция:

Переделка БП под зарядное по такой методике – дело одного вечера, но для себя любимого времени не жалко?

Тогда позвольте представить:

Вариант 4.

За основу взято БП Linkworld LW2-300W на ШИМ WT7514L (аналог уже знакомой нам по первому варианту LPG-899).

Ну что ж: демонтаж ненужных нам элементов осуществляем согласно варианту 1, с той лишь разницей, что канал 5В тоже демонтируем – он нам не пригодится.

Здесь схема будет более сложной, вариант с монтажом без изготовления печатной платы в данном случае – не вариант. Хотя и полностью от него мы отказываться не будем. Вот приготовленная частично плата управления и сама жертва эксперимента ещё не отремонтированная:

А вот она уже после ремонта и демонтажа лишних элементов, а на втором фото с новыми элементами и на третьем её обратная сторона с уже проклеенными прокладками изоляции платы от корпуса.

То, что обведено на схеме рис.6 зеленой линией – собрано на отдельной плате, остальное было собрано на освободившемся от лишних деталей месте.

Для начала попробую рассказать: чем это зарядное отличается от предыдущих устройств, а уж потом расскажу какие детали, за что отвечают.

  • Включение зарядного происходит только при подключении к нему источника ЭДС (в данном случае аккумулятора), вилка при этом должна быть включена в сеть заблаговременно J.
  • Если по каким-либо причинам напряжение на выходе превысит 17В или окажется менее 9В – ЗУ отключается.
  • Максимальный ток заряда регулируется переменным резистором от 4 до 12А, что соответствует рекомендуемым токам заряда аккумуляторов от 35А/ч до 110А/ч.
  • Напряжение заряда регулируется автоматически 14,6/13,9В, либо 15,2/13,9В в зависимости от выбранного пользователем режима.
  • Напряжение питания вентилятора регулируется автоматически в зависимости от тока заряда в диапазоне 6-12В.
  • При КЗ или переполюсовке срабатывает электронный самовосстанавливающийся предохранитель на 24А, схема которого, с незначительными изменениями, была заимствована из разработки почетного кота победителя конкурса 2010г Simurga. Скорость в микросекундах не мерил (нечем), но штатная защита БП дернуться не успевает – он гораздо быстрее, т.е. БП продолжает работать как ни в чём не бывало, только вспыхивает красный светодиод срабатывания предохранителя. Искр, при замыкании щупов практически не видно, даже при переполюсовке. Так что очень рекомендую, на мой взгляд эта защита лучшая, по крайней мере из тех что я видел (хотя и немного капризная на ложные срабатывания в частности, возможно придётся посидеть с подбором номиналов резисторов).

Теперь, кто за что отвечает:

  • R1, C1, VD1 – источник опорного напряжения для компараторов 1, 2 и 3.
  • R3, VT1 – цепь автозапуска БП при подключении аккумулятора.
  • R2, R4, R5, R6, R7 – делитель опорных уровней для компараторов.
  • R10, R9, R15 – цепь делителя защиты от перенапряжения на выходе о которой я упоминал.
  • VT2 и VT4 с окружающими элементами – электронный предохранитель и токовый датчик.
  • Компаратор OP4 и VT3 с резисторами обвязки – регулятор оборотов вентилятора, информация о токе в нагрузке, как видите, поступает от токового датчика R25, R26.
  • И наконец, самое важное - компараторы с 1-го по 3-й обеспечивают автоматическое управление процессом заряда. Если аккумулятор достаточно сильно разряжен и хорошо «кушает» ток, ЗУ ведет заряд в режиме ограничения максимального тока установленного резистором R2 и равном 0,1С (за это отвечает компаратор ОР1). При этом, по мере заряда аккумулятора, напряжение на выходе зарядного будет расти и при достижении порога 14,6 (15,2), ток начнет уменьшаться. Вступает в работу компаратор ОР2. Когда ток заряда упадет до 0,02-0,03С (где С емкость аккумулятора а А/ч), ЗУ перейдет на режим дозаряда напряжением 13,9В. Компаратор OP3 используется исключительно для индикации, и никакого влияния на работу схемы регулировки не оказывает. Резистор R2 не просто меняет порог максимального тока заряда, но и меняет все уровни контроля режима заряда. На самом деле, с его помощью выбирается емкость заряжаемого аккумулятора от 35А/ч до 110А/ч, а ограничение тока это «побочный» эффект. Минимальное время заряда будет при правильном его положении, для 55А/ч примерно посередине. Вы спросите: «почему?», да потому что если, к примеру, при зарядке 55А/ч аккумулятора поставить регулятор в положение 110А/ч – это вызовет слишком ранний переход к стадии дозаряда пониженным напряжением. При токе 2-3А, вместо 1-1,5А, как задумывалось разработчиком, т.е. мной. А при выставлении 35А/ч будет мал начальный ток заряда, всего 3,5А вместо положенных 5,5-6А. Так что если вы не планируете постоянно ходить смотреть и крутить ручку регулировки, то выставляйте как положено, так будет не только правильнее, но и быстрее.
  • Выключатель SA1 в замкнутом состоянии переводит ЗУ в режим «Турбо/Зима». Напряжение второй стадии заряда повышается до 15,2В, третья остается без существенных изменений. Рекомендуется для заряда при минусовых температурах аккумулятора, плохом его состоянии или при недостатке времени для стандартной процедуры заряда, частое использование летом при исправном аккумуляторе не рекомендуется, потому что может отрицательно сказаться на сроке его службы.
  • Светодиоды, помогают ориентироваться, на какой стадии находится процесс заряда. HL1 – загорается при достижении максимально допустимого тока заряда. HL2 – основной режим заряда. HL3 – переход в режим дозаряда. HL4 – показывает что заряд фактически окончен и аккумулятор потребляет менее 0,01С (на старых или не очень качественных аккумуляторах до этого момента может и не дойти, поэтому ждать очень долго не стоит). Фактически аккумулятор уже хорошо заряжен после зажигания HL3. HL5 – загорается при срабатывании электронного предохранителя. Чтобы вернуть предохранитель в исходное состояние, достаточно кратковременно отключить нагрузку на щупах.

Что касается наладки. Не подключая плату управления или не запаивая в неё резистор R16 подбором R17 добиться напряжения 14,55-14,65В на выходе. Затем подобрать R16 таким, чтобы в режиме дозаряда (без нагрузки) напряжение падало до 13,8-13,9В.

Вот фото устройства в собранном виде без корпуса и в корпусе:

Вот собственно и всё. Зарядка была испытана на разных аккумуляторах, адекватно заряжает и автомобильный, и от UPS (хотя все мои зарядки заряжают любые на 12В нормально, потому что напряжение стабилизировано J). Но это побыстрее и ничего не боится, ни КЗ, ни переполюсовки. Правда, в отличие от предыдущих, в качестве БП использовать не получится (очень оно стремится управлять процессом и не хочет включаться при отсутствии напряжения на входе). Зато, его можно использовать в качестве зарядного для аккумуляторов резервного питания, вообще не отключая никогда. Заряжать будет в зависимости от степени разряда автоматически, а из-за малого напряжения в режиме дозаряда существенного вреда аккумулятору не принесет даже при постоянном включении. При работе, когда аккумулятор уже почти заряжен, возможен переход зарядного в импульсный режим заряда. Т.е. ток зарядки колеблется от 0 до 2А с интервалом от 1 до 6 секунд. Сначала, хотел было устранить это явление, но, почитав литературу – понял, что это даже хорошо. Электролит лучше перемешивается, и даже иногда способствует восстановлению потерянной емкости. Поэтому решил оставить так как есть.

Вариант 5.

Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.

Вот он, собственной персоной:

Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но… для нас - несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах.

В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:

Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:

А это внутренности блока в сборе и внешний вид:

Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.

В целом это немного упрощённый вариант 4. Разница заключается в следующем:

  • В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки. Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
  • Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
  • Регулировка оборотов вентилятора тоже была упрощена.

А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухсегментный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень L), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они - мерцают. В остальном - всё нормально.

Индикация выглядит так:

На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.

Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.

Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.

Да, чуть не забыл. Резистор R30 устанавливать именно так - совсем не обязательно. Просто, у меня никак не выходило подобрать номинал впараллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.

Заключение.

Как видите, при правильном подходе, почти любой БП АТХ можно переделать в то, что вам нужно. Если будут новые модели БП и нужда в зарядках, то возможно будет и продолжение.

Кота от всего сердца поздравляю с юбиелеем! В его честь, кроме статьи, ещё был заведён новый жилец - очаровательная серая киска Маркиза.

Похожие публикации