Зарядка кадмиевых аккумуляторов. Как заряжать Ni-Cd-аккумуляторы: описание процесса


Зачастую нет необходимости конструировать сложные устройства, которые учитывают много параметров разрядно-зарядного цикла аккумуляторов. Достаточно учесть пару-тройку таких параметров как напряжение окончания разрядки, напряжение окончания зарядки и зарядный ток. Выбранные параметры цикла предотвращают избыточную или недостаточную зарядку аккумуляторов, что в последствии увеличивает их срок службы.

Устройство питается от нестабилизированного источника с выходным током не менее 100 мА, напряжение которого с учётом пульсаций должно находиться в пределах 11,5...30 В.

Схема:


Микросхема DA1 стабилизирует напряжение питания 9 В для остальных узлов устройства. Основой устройства является триггер Шмитта на транзисторах VT1 и VT2, последний из которых включён как эмиттерный повторитель. Петля гистерезиса стабильна во времени и достаточно просто регулируется. Конденсатор СЗ защищает триггер Шмитта от ложных переключений при воздействии помех.
Состояние триггера Шмитта зависит от напряжения заряжаемой батареи, подключённой к выходу устройства. При напряжении 4 В и менее на эмиттере транзистора VT2 устанавливается высокий уровень напряжения, а при 5,92 В и более - низкий. Низкий уровень выходного напряжения на эмиттере VT2 не равен нулю и составляет 0,3 В, поэтому для исключения влияния нагрузки на нижний порог переключения триггера Шмитта применены развязывающие диоды VD1 и VD2, которые при таком напряжении не открываются.
Транзистор VT3, работает в ключевом режиме и управляет стабилизатором зарядного тока на транзисторе VT4, светодиоде HL1 и резисторе R11. Светодиод HL1 использован как стабистор и индикатор режима зарядки. Ток зарядки устанавливают путём подбора резистора R11 . Благодаря двойной стабилизации напряжения (микросхемой DA1 и светодиодом HL1) стабильность коллекторного тока транзистора VT4 достаточно высока(он не изменялся при подключении к выходу батареи, состоящей от двух до пяти элементов различной разряженности во время испытаний). Диод VD4 предотвращает разрядку батареи через стабилизатор тока после отключения питания устройства.
Через транзистор VT5, тоже работающий в режиме ключа, и резистор R13 осуществляется разрядка батареи до тех пор, пока тринистор VS1 закрыт. После открывания тринистора VS1 разрядка прекращается и светодиод HL2 - индикатор режима разрядки гаснет.

Работа устройства:
Сначала к ЗУ подключают батарею из четырёх аккумуляторов и затем подают напряжение питания. Пока напряжение батареи превышает 4 В (в среднем 1 В на элемент) транзистор VT1 открыт, транзисторы VT2-VT4, диоды VD1-VD4 и тринистор VS1 закрыты. Транзистор VT5 открыт и насыщен, через него и резистор R13 батарея разряжается. Светодиод HL2 включён. Ток разрядки не следует устанавливать больше 1/10 ёмкости батареи.

Когда напряжение батареи в процессе разрядки станет менее 4 В, триггер Шмитта переключится, транзистор VT1 закроется, a VT2 откроется. На выходе триггера Шмитта установится напряжение высокого уровня (около 8 В). Диод VD1 и тринистор VS1 открываются, в результате чего откроется и диод VD3, закроется транзистор VT5, светодиод HL2 погаснет, режим разрядки прекратится. Одновременно напряжение высокого уровня с выхода триггера Шмитта откроет диод VD2 и транзистор VT3, в результате чего загорится светодиод HL1, откроются транзистор VT4 и диод VD4, через которые начнётся зарядка батареи стабильным током.
Нажатием на кнопку SB1, устройство принудительно переключается из режима разрядки в режим зарядки. Это необходимо, если используются Ni-MH аккумуляторы, которые не подвержены "эффекту памяти" и, соответственно, не нуждаются в предварительной разрядке.

В процессе зарядки, когда напряжение батареи достигнет 5,92 В (в среднем 1,48 В на элемент), триггер Шмитта переключится: транзистор VT1 откроется, a VT2 закроется. Закроются диод VD2 и транзистор VT3, светодиод HL1 погаснет, в результате чего закроются транзистор VT4 и диод VD4, а процесс зарядки прекратится. Но тринистор VS1 остаётся открытым, поэтому транзистор VT5 не откроется и режим разрядки не включится. После выключения питания устройства необходимо отключить от него батарею, в противном случае она будет разряжаться.

Монтаж и комплектующие:
Транзисторы КТ315Б (VT1-VT3) можно заменить транзисторами КТ315Г или КТ315Е. Можно применить и другие кремниевые маломощные транзисторы структуры n-p-n с максимальным током коллектора не менее 100 мА, но для триггера Шмитта желательно подобрать транзисторы с коэффициентом передачи тока базы не менее 50. Транзисторы VT4 и VT5 - любые из серий КТ814, КТ816. Они установлены на теплоотводах из полосок мягкого алюминия размерами 28x8 мм и толщиной 1 мм, согнутых в виде буквы "П". Диоды - любые кремниевые маломощные, кроме VD4, который должен выдерживать ток зарядки. Подстроечные резисторы R2 и R5 - многооборотные СП5-2. Светодиоды HL1 и HL2 желательно применить разного цвета свечения для однозначной индикации режима работы устройства.

Настройка:
Для налаживания устройства необходима вспомогательная батарея 9... 12 В, к которой подключён потенциометром переменный резистор сопротивлением несколько кОм. Для облегчения точной установки необходимого напряжения в разрыв цепи одного из крайних выводов этого резистора желательно включить как реостат другой переменный резистор в десять раз меньшего сопротивления.

Движки подстроечных резисторов R2 и R5 устанавливают в нижнее по схеме положение. Временно разрывают соединение левого по схеме вывода резистора R1 с плюсовым выходом устройства. На время налаживания этот вывод становится входом устройства, который соединяют с движком переменного резистора. Минусовый вывод вспомогательной батареи соединяют с общим проводом устройства. Заряжаемую батарею к выходу не подключают. После включения питания необходимо убедиться в наличии стабильного напряжения 9 В на выходе микросхемы DA1.

Затем устанавливают пороги переключения. Вольтметр подключают к эмиттеру транзистора VT2. Вначале движком подстроечного резистора R2 устанавливают нижний порог переключения 4 В. При снижении входного напряжения ниже этого порога на 0,05...0,1 В должен закрываться транзистор VT1 и устанавливаться высокий уровень напряжения на эмиттере транзистора VT2. Затем движком подстроечного резистора R5 устанавливают верхний порог переключения 5,92 В. При увеличении входного напряжения выше этого порога на 0,05...0,1 В транзистор VT2 должен открываться и устанавливаться низкий уровень напряжения на эмиттере транзистора VT2. Проверяют оба порога переключения.

Далее проверяют, что после открывания транзистора VT2 тринистор VS1 также открывается. Если это не так, уменьшают сопротивление резистора R6, добиваясь чёткого открывания тринистора. Для выключения тринистора кратковременно отключают напряжение питания.

Наконец, к выходу устройства подключают последовательно соединённые миллиамперметр и заряжаемую батарею. В режиме зарядки подборкой резистора R9 устанавливают желаемую яркость свечения светодиода HL1, а подборкой резистора R11 - требуемый ток зарядки. Далее отключают вспомогательную батарею и восстанавливают соединение левого по схеме вывода резистора R1 с плюсовым выходом устройства. Тринистор VS1 отключают. Мультиметр подключают к выходу устройства в режиме измерения напряжения. Наблюдают процесс зарядки батареи и автоматическое переключение устройства в режим разрядки после достижения выходного напряжения 5,92 В. Далее в режиме разрядки резистором R12 устанавливают яркость свечения светодиода HL2 и начальный ток разрядки подборкой резистора R13. Затем подключают тринистор VS1 и переключают устройство в режим зарядки. По его окончании необходимо убедиться, что тринистор VS1 открылся и предотвратил включение режима разрядки.

Сильный нагрев аккумуляторов в конце зарядки, говорит о том, что слишком велик зарядный ток, его необходимо уменьшить, но при этом увеличится время зарядки.

Г. ВОРОНОВ, г. Ставрополь "Радио" №1 2012г.


Для расчета времени зарядки никель-металл-гидридного аккумулятора (Ni-MH) можно использовать следующую упрощенную формулу:

Время зарядки (ч) = Емкость аккумулятора (мАч) / Сила тока зарядного устройства (мА)

Допустим у нас есть Ni-MH аккумулятор с ёмкостью 2000mAh, зарядный ток в нашем самодельном зарядном устройстве предположим 500mA. Делим емкость батареи на ток заряда и получаем 2000/500=4 часа!

Правила, которые желательно соблюдать, для продолжительной эксплуатации никель-металл-гидридного (Ni-MH) аккумулятора:
Храните Ni-MH аккумуляторы с низким количеством заряда (30 - 50% от его ёмкости)
Никель-металлогидридные батареи чувствительны к нагреву, поэтому ни в коем случае не перегружайте их, иначе резко снизится способность Ni-MH аккумулятора держать и выдавать накопленный заряд.
Ni-MH аккумуляторы можно, но совсем не обязательно тренировать. Четыре цикла заряда/разряда в хорошем зарядном устройстве позволяет достичь максимума емкости, которая теряется в процессе хранения аккумуляторов.
После разряда или заряда дайте немного времени остыть гибриду до комнатной температуры. Заряд Ni-MH аккумуляторов при температуре ниже 5 или выше 50 градусов может существенно подпортить их здоровье.
Если возникла необходимость разрядить Ni-MH аккумулятор, то не разряжайте его ниже уровня в 0.9В для каждого элемента
Если вы постоянно используете одну и ту же батарею из аккумуляторов в каком-либо приборе в режиме дозаряда, то иногда желательно разряжать каждый аккумулятор из сборки до уровня в 0,9В и осуществлять его полный заряд во внешнем зарядном устройстве.

Тем, кто не очень хорошо разбирается в радиоэлектронике и делает в этом направлении первые шаги, рекомендую собрать вот такую простую схему ЗУ, всего на одном биполярном транзисторе. В зависимости от выбранного номинала сопротивления R2 будет менятся зарядный ток и в принципе заряжать самые разные батаеи, даже литиевые.

R1 = 120 Ом, R2 = Смотри таблицу на схеме, C1 = 220 мкФ 35В, D1 = 1N4007, D2 = практически любой светодиод, Q1 - транзистор BD135

Схема идеально подойдет для применения от бортовой сети автомобиля или от любого блока питания, с напряжением на выходе 6-12 вольт. Её можно использовать для зарядки мобильных телефонов, различных электронных игрушек, планшетов, MP3 и т.п. Схема достаточно универсальна, так как мы выбираемый зарядный ток. Горящий светодиод говорит о том, что идёт процесс зарядки.

В таблице выше указывается минимальное и максимальное напряжение питания ЗУ. Например, для зарядки АКБ 6В минимальное напряжение требуется 12В. Рекомендуется заряжать аккумулятор током, который в 10 раз ниже емкости батареи, а время для его заряда потребуется около 15 часов. Если в два раза увеличить зарядный ток, то и заряжать батарею можно в два раза быстрее и это не приведёт к повреждению батареи. Транзистор должен быть смонтирован на радиаторе.

Если в используете различные устройства в которых все еще используются пальчиковые батарейки, то их приходится часто менять, например в металл детекторе или GPS-Глонас туристическом навигаторе eTrex. Но есть решение этой проблемы замена обычных батареек на никелевые батареи стандарта АА. Вот тут и понадобится вам зарядка аккумуляторов АА

Биполярный транзистор и светодиод HL1 основа схемы источника постоянного тока. Прямое напряжение светодиода около 1,5 вольт минус напряжение эмиттерного перехода транзистора VT1 (0,6 В) следует через резистор номиналом 6,8 Ом или 15 Ом в зависимости от положения тумблера SA1. При выборе сопротивления номиналом 15 Ом в цепи эмиттерной цепи зарядный ток будет около 60 мА, а с сопротивлением 6,8 Ом ток будет 130 мА. Этого вполне хватает для зарядки никель-кадмиевый аккумулятора емкостью 600 mAh за 14 часов или 5 часов, в зависимости от резистора.

Компаратор на микросхеме LM393 применяется для автоматического отключения ЗУ. На его инверсном входе с помощью подстроечного сопротивления задано 2,9 вольт, а на его прямом входе отслеживается напряжение на аккумуляторе.

В момент процесса зарядки никель кадмиевого аккумулятора, внутренний выходной транзистор LM393 открыт и, поэтому, открыт и VT1. После заряда батареи на 80% или более, напряжение на клеммах аккумулятора станет выше 1,45 вольт. Напряжение на неинвертирующем входе DD2 станет выше опорного напряжения на инвертирующем входе и на выходе компаратора сигнал поменяется на противоположный, транзистор VT1 запирается, отключая источник тока.

Для того чтобы исключить переключение компаратора в диапазоне порогового напряжения, в конструкцию введена емкость конденсатор на 0,1 мкФ создающая обратную связь между выходом и инвертирующим входом микросхемы.

Четыре логических элемента И-НЕ DD1 применяются для построения двух генераторов с различными частотами. При соединении сигналов с них появляется тональный сигнал, который следует на пьезоэлектрический элементом в момент времени, когда заряд АКБ закончен.

Эта схема, выполнена с использованием 4-х биполярных транзисторов, в первую очередь применяется для зарядки 12 вольтовых Ni-Cd батарей. Кроме того можно заряжаться аккумуляторны на 6 и 9 вольт, но придется уменьшить мощность устройства. Встроенный регулятор тока регулирует зарядный ток до четырех ампер. Когда он достигает своего максимума, напряжение на сопротивление R1 - 0.7В, поэтому открывает транзистор Q1. В это момент времени транзистор Q2 открыт и шунтирует базу Q3 на землю, что приводит к смещению режима Q4, через который происходит зарядка. Так осуществляется регулировка зарядного тока. При зарядке аккумуляторов с низким уровнем напряжения, избыток напряжения ЗУ будет падать на Q4.

Первичная обмотка трансформатора типовая на 230 вольт, напряжение вторичной обмотки должно быть около 30 вольт, при токе в 3 ампера. Диодный моста собрал на четырех диода 1N5400; Предохранитель F1 на ток 500 мА. Резистор R1 найти проблематично из-за нестандартного сопротивления, его можно заменить , сопротивлением по 0,3 Ом каждый. Схему можно дополнить фильтрующим конденсатором и защитой от переплюсовки.

ЗУ опмсаное в статье предназначено в первую очередь для заряда Ni-MH никелевых аккумуляторов. Основа его специализированная микросборка управления зарядом LT4060. Предоставленная ниже схема достаточно мощная и эффективная, она применяется для быстрого (около часа) заряда Ni-MH АКБ.

Никель-кадмиевые аккумуляторные батареи получили довольно широкое распространение.

известно много способов эффективной зарядки никель-кадмиевых (аккумуляторных) батарей, описываемая схема уникальна тем, что объединяет почти все их преимущества. Так, она вырабатывает постоянный зарядный ток, значение которого может лежать в диапазоне 0,4-1,0 А.

Схема может работать либо от сети переменного тока 220 В, либо от 12-В батареи.


Заряжаемая батарея защищена от перезаряда благодаря автоматическому отключению схемы при достижении заданного уровня напряжения на батарее. Более того, этот уровень можно подстраивать. Наконец, схема недорога и защищена от коротких замыканий.

Если батарея разряжена, то напряжение на инвертирующем входе операционного усилителя U1 будет ниже напряжения на неинвертирующем входе, устанавливаемом посредством потенциометра R1 (см. рисунок). Вследствие этого выходное напряжение U1 будет примерно равно положительному напряжению питания, что приведет к отпиранию транзистора Q1, а также транзистора Q2, который будет работать в режиме генератора постоянного зарядного тока. Уровень этого тока можно найти из соотношения (Vd-Vbe)/R6, где Vd-напряжение между его базой и эмиттером. Этим током, протекающим далее через диод D8, и заряжается Ni-Cd-батарея. При этом будет гореть светодиод D7, индицируя тем самым протекание процесса зарядки, и являясь индикатором рабочего режима.

По мере зарядки батареи напряжение на ней увеличивается, что приводит к возрастанию напряжения на инвертирующем входе U1, пока оно не сравняется с Vin. В этот момент выходное напряжение U1 падает до потенциала земли, и транзисторы Q1 и Q2 запираются, предотвращая тем самым перезаряд батареи. Задаваемый предельный уровень выходного напряжения, Vout, можно вычислить из соотношения Vout=Vin(R7+R8)/R8.

При приведенных значениях компонентов схема вырабатывает зарядный ток 400 мА, который можно изменять, подбирая R6 до достижения максимального значения, равного 1 А. Задаваемый уровень зарядного напряжения следует устанавливать при отключенной батарее.

Диод D8 предотвращает разряд в обратном направлении в случае отключения сети или 12-В источника питания. Для 7,2-В Ni-Cd-батареи, задаваемое значение зарядного напряжения равно 7,9-8,0 В. Мощный транзистор Q2 следует установить на большой радиатор.

В Интернете на глаза попалась схема автоматического зарядного устройства Ni-Cd аккумуляторов, разработанная Юрием Башкатовым. Собрал схему на макетной плате - не работает. Смоделировал ее на компьютере с помощью программы Work Bench. В результате получилось то, что изображено на схеме. Работает устройство следующим образом. Транзистор VT1 (p-n-p) открыт, если на его базе наличествует отрицательный потенциал, который может появиться, когда транзистор VT2 (n-p-n) открыт, - это, в свою очередь, происходит, если потенциал на его базе, устанавливаемый с помощью переменного резистора R4, будет на 0,3 - 0,4 В больше этого показателя на его же эмиттере.

Эмиттер транзистора VТ2 соединен с катодом тиристора VS1 и заряжаемым аккумулятором. Как только напряжение на нем достигнет порогового значения, транзистор VТ2 закроется. Вслед за ним закроется и транзистор VT1. Тиристор выключится, заряд прекратится. Этим самым предотвращается перезаряд Ni-Cd аккумулятора.

Резистором R4 устанавливается порог срабатывания автоматического устройства. Для информативности величины напряжения на базе (граничная величина напряжения заряда) можно было бы к базе подключить вольтметр. Однако авторы посчитали, что вольтметр лучше подключить к эмиттеру транзистора VT2. Таким образом, сразу при подключении аккумуляторов видно, какое на них напряжение. При нажатой кнопке, контролируя напряжение по вольтметру, устанавливаем напряжение на эмиттере с помощью резистора R7 После этого, не отпуская кнопки SА1, выставляем порог срабатывания устройства резистором R4, контролируя срабатывание по загоранию балластной лампочки ЕL1. Кнопку отпускаем, лампочка должна гореть, аккумуляторы начали заряжаться Как только напряжение на аккумуляторах достигнет порогового режима, лампочка погаснет, заряд окончится.

Практика заряда Ni-Cd аккумуляторов показала, что конечное напряжение, рекомендуемое в инструкциях, не 1,2 В, и даже не 1,5 В, а 1,7 В, поэтому для двух аккумуляторов я устанавливаю порог срабатывания 3,4 В.

Предлагаемое универсальное зарядное устройство обеспечивает как ускоренную зарядку никель-кадмиевых (Ni-Cd) и никель-металлгидридных (Ni-MH) аккумуляторных батарей повышенным током, так и их зарядку в так называемом обычном режиме с меньшим током зарядки. При этом в первом случае окончание зарядки происходит при падении напряжения на аккумуляторе. Благодаря использованию микросхемы MC33340D данное зарядное устройство позволяет контролировать падение напряжения с чувствительностью 4 мВ. Помимо этого, с помощью перемычек можно заранее установить определенное время зарядки. При необходимости контролируется не только напряжение на аккумуляторе в режиме ускоренной зарядки, но и напряжение источника питания

устройства. Зарядка прекращается и в случае повышения температуры аккумулятора выше установленного лимита. Питание зарядного устройства осуществляется от источника постоянного напряжения 5-18 В с максимальным током 1,5 А.

Данное универсальное зарядное устройство для NiCd и NiMH аккумуляторов представляет собой регулятор, выполненный на микросхеме типа MC33340D. Принципиальная схема прибора приведена на рис. 7.


Сразу после подключения питающего напряжения универсальное зарядное устройство начинает работать в режиме ускоренной зарядки.

В том случае, если аккумулятор не подключен или неисправен, напряжение на выводе 1 (VSEN) микросхемы IC2 (MC33340D) будет либо меньше величины 1 В, либо больше, чем 2 В. При этом зарядное устройство автоматически переключится в обычный режим. В обычный режим работы данное зарядное устройство переключится и в том случае, если в течение 177 с на клеммах заряжаемого аккумулятора будет зафиксировано падение напряжения определенной ве* личины, что свидетельствует об окончании процесса зарядки. Помимо этого переключение в обычный режим может

осуществляться по окончании выбранного времени зарядки, или же при повышении температуры аккумулятора сверх допустимой нормы.

Время зарядки аккумуляторной батареи выбирается с помощью установки или удаления перемычек Т1-ТЗ. Зависимость времени зарядки от установки перемычек приведена в табл. 1.

Перемычка

Перемычка

Перемычка

Примечания

зарядки, мин

Таблица 1. Зависимость времени зарядки аккумулятора от положения перемычек

При выборе режима зарядки с отключением при повышении температуры аккумулятора сверх допустимой нормы для измерения температуры аккумуляторной батареи к выводу 6 {Т2) микросхемы IC2 следует подключить терморезистор величиной 10 кОм. При этом к выводам 7 (Т1) и 5 (ТЗ) микросхемы IC2 должны быть подключены резисторы R7 и R8, с помощью которых устанавливается диапазон допустимых температур аккумулятора. Величина сопротивления резистора R7 определяет максимальную допустимую температуру, а величина сопротивления резистора R8 определяет минимальную допустимую температуру аккумуляторной батареи. Если в процессе зарядки аккумулятора его температура будет находиться в выбранном диапазоне, то аккумулятор будет заряжаться в ускоренном режиме. В этом случае напряжение на выводах 7 (Т1), б (Т2) и 5 (ТЗ) микросхемы IC2 будет в пределах от 0 В до величины (Vcc - 0,7) В, где Vcc - напряжение питания микросхемы IC2 (вывод 8). Если же температура аккумулятора во время зарядки изменится и выйдет

из выбранного диапазона, то изменится напряжение на выводе 7 (Т1) или 5 (ТЗ) микросхемы IC2, и зарядное устройство переключится в обычный режим.

Поскольку ток, протекающий через выводы 7 (Т1), 6 (Т2) и 5 (ТЗ) микросхемы IC2 составляет примерно 30 икА, рассчитать значения величин сопротивлений резисторов R7 и R8 довольно просто. Так, например, если сопротивление терми-стора R10 при минимальной выбранной температуре составляет 8,2 кОм, то и величина сопротивления резистора R8 должна быть 8,2 кОм. Если сопротивление термистора R10 при максимальной выбранной температуре составляет 15 кОм, то и величина сопротивления резистора R7 должна быть 15 кОм.

Таким образом, при выборе режима зарядки с отключением при повышении температуры аккумулятора предлагаемая схема обеспечивает ускоренную зарядку аккумуляторной батареи только в том случае, если ее температура не выходит за установленные границы. Если в процессе зарядки температура аккумулятора станет меньше минимального предела, то зарядное устройство переключится в обычный режим, и аккумулятор будет заряжаться малым током дежурного режима до тех пор, пока его температура не войдет в норму. Если же температура аккумулятора станет больше максимального предела, то зарядное устройство также переключится в обычный режим, но не выйдет из него до отключения аккумулятора.

В том случае, если выбран режим, при котором окончание зарядки определяется истечением определенного промежутка времени, резисторы R7, R8 и терморезистор R10 не устанавливаются, а время зарядки выбирается с помощью установки перемычек Т1-ТЗ в соответствии с табл. 1. Этот вариант зарядки используется как запасной, то есть в том случае, если по каким-либо причинам нельзя провести окончание зарядки с помощью контроля падения напряжения на аккумуляторе.

Микросхема IC1 (LM317) в предлагаемой конструкции используется в качестве источника постоянного тока. Такая схема включения должна обеспечить постоянное напряжение

величиной 1,2 В между выводами ADJ и OUT данной микросхемы. Поскольку между указанными выводами включен резистор R3, через который протекает ток зарядки, этот ток всегда будет иметь величину, при которой падение напряжения на резисторе R3 равно 1,2 В.

Для корректного распознавания момента окончания зарядки аккумулятора при падении напряжения на его контактах необходимо обеспечить наличие на выводе 1 (Vsen) микросхемы IC2 напряжения, соответствующего напряжению одного элемента аккумуляторной батареи. Для этого используется делитель напряжения, выполненный на резисторах R1 и R2. Так, например, если выбрать величину сопротивления резистора R1 равной 10 кОм, величину сопротивления резистора R2 следует рассиитать по следующей формуле:


VAKK- общее номинальное напряжение аккумуляторной батареи;

VSEN- напряжение на выводе 1 микросхемы IC2, которое должно составлять 1,2 В.

При этом общее напряжение аккумуляторной батареи рассчитывается по формуле:


N- количество элементов в аккумуляторной батарее; Uj - напряжение одного элемента, которое обычно составляет 1,2 В.

Так, например, при величине сопротивления резистора R1, равной 10 кОм, для аккумулятора, состоящего из шести элементов, величина сопротивления резистора R2 будет составлять:

R2 = 10 ОООх (7,2/12 -1) = 50кОм

Если же предполагается заряжать один элемент, то резистор R1 не устанавливается, а величина сопротивления резистора R2 должна составлять 10 кОм.

В то же время изменение количества элементов в заряжа-

емой аккумуляторной батарее требует изменения напряжения UnMV поступающего от источника питания данного устройства. При этом минимальная величина напряжения источника питания рассчитывается по формуле:

ипит = 3 + 2М,

N- количество элементов в аккумуляторной батарее.

Зависимость значений величин резисторов R1 и R2, а также питающего напряжения от количества заряжаемых элементов приведена в табл. 2.

Таблица 2. Зависимость значений величин резисторов R1, R2 и питающего напряжения от количества заряжаемых элементов

Количество

Напряжение

Напряжение

заряжаемых

аккумуляторной

питания ипит, В

элементов

батареи U^, В

Необходимо отметить, что соответствующие значения величины напряжения UnHT при зарядке указанного в табл. 2 количества элементов могут быть и выше, однако это потребует дополнительного охлаждения микросхемы IC1, например, с помощью установки ее на радиатор.

Питающее напряжение микросхемы IC2 должно быть в пределах 3-18 В. В том случае, если потребуется одновременно заряжать большее количество элементов, то необходимо обеспечить, чтобы питающее напряжение микросхемы на выводе 8 микросхемы IC2 не превысило величины 18 В. При этом напряжение на выводах 2 и 3 микросхемы IC2 не должно превышать величину 20 В. г

Значение величины тока зарядки в обычном режиме (1ОР) рассчитывается по формуле:


1ор - ток зарядки в обычном режиме (А);

UmT- напряжение источника питания (В);

UD2 - падение напряжения на диоде D2 (примерно 0,6В);

UAKK- напряжение аккумуляторной батареи (В);

R5- величина сопротивления резистора R5 (Ом).

Обычно величина тока зарядки в обычном режиме выбирается равной 1/100 от значения емкости аккумуляторной батареи. При этом значение мощности, рассеиваемой на резисторе R5, определяется по формуле:


При зарядке аккумулятора в ускоренном режиме значение величины тока зарядки (Iyp) рассчитывается по формуле:


1^- ток зарядки в ускоренном режиме (А);

UICJ - выходное напряжение микросхемы IC1 (В);

IADJ- ток утечки микросхемы IC1 (примерно 50 мкА).

Величину тока зарядки в ускоренном режиме следует выбирать в зависимости от типа аккумулятора. Обычно этот ток должен быть в пределах 1-2 значения емкости аккумуляторной батареи. Ток зарядки в ускоренном режиме можно регулировать изменением сопротивления регулировочного резистора R4 в пределах, определяемых значением сопротивления резистора R3, а максимальная величина этого тока (Ij^c) не может превышать максимального допустимого значения тока для микросхемы IC1, то есть величину 1,5 А.

Минимальный ток зарядки в ускоренном режиме определяет величину сопротивления резистора R3. Значение сопротивления резистора R3 можно рассчитать, воспользовавшись следующей формулой:


Так, например, если выбрать значение минимального тою зарядки в ускоренном режиме равным 0,45 А, то сопротивле ние резистора R3 составит 2,7 Ом. При этом значение мощ ности, рассеиваемой на резисторе R3 определяется по фор муле:


Чтобы можно было в определенных пределах регулировать величину минимального тока зарядки, в предлагаемом устройстве желательно установить резистор R3 мощностью не менее 2 Вт.

Максимальный ток зарядки в ускоренном режиме с учетом выбранной величины мощности, рассеиваемой на резисторе R3 (в нашем примере 2 Вт), определяется по формуле:


В результате для выбранных параметров максимальный ток зарядки 1МАКС в ускоренном режиме будет составлять 0,86 А. Таким образом, при сопротивлении резистора R3, равном 2,7 Ом, и рассеиваемой на нем мощности 2 Вт ток зарядки можно изменять с помощью регулировочного резистора R4 в пределах от 0,45 А до 0,86 А. Такой ток считается оптимальным для пальчиковых аккумуляторов емкостью 450-850 мА.

С помощью простых расчетов можно определить значения минимального и максимального тока зарядки в ускоренном режиме в зависимости от рассеиваемой мощности и величины сопротивления резистора R3. Эти данные приведены в табл. 3.

Таблица 3. Значения минимального и максимального тока зарядки в ускоренном режиме в зависимости от рассеиваемой мощности и величины сопротивления резистора R3

Минималь-

Максималь-

Сопротивление

Рассеиваемая

Примечание

резистора

мощность, Вт

зарядки, А

зарядки, А

Все детали универсального зарядного устройства размещены на печатной плате размером 52x40 мм. Печатная плата приведена на рис. 8.


Рис. 8. Печатная плата универсального зарядного устройства

Расположение деталей на печатной плате прибора показано на рис. 9.


Рис. 9. Расположение деталей на печатной плате универсального зарядного устройства

К деталям, используемым в данном устройстве, не предъявляются какие-либо особые требования. Естественно, рекомендуется применять любые малогабаритные резисторы и конденсаторы, которые без проблем можно разместить на печатной плате.

При изготовлении зарядного устройства можно использовать, например, резисторы типа МЛТ-0,125. Вполне подойдут

и другие малогабаритные резисторы. В то же время, величина рассеиваемой мощности резистора R3, в соответствии с приведенными ранее расчетами, должна составлять 2 Вт. Конденсаторы С1 и С2 могут быть металлокерамическими или керамическими.

Диод 1N4148 (D1) можно заменить на отечественные диоды КД510, КД521 или КД522, обращая особое внимание на маркировку выводов катода и анода. Вместо диода 1N4007 (D2) можно установить отечественные диоды КД105, КД208, КД209 или КД243. Светодиод D4 - любой на ток 20 мА.

Монтаж элементов на печатной плате следует начать с установки микросхемы IC1 со стороны печатных проводников. При этом сначала необходимо аккуратно припаять один из выводов микросхемы к соответствующей контактной дорожке, а затем - все остальные выводы. Остальные элементы устанавливаются в обычном порядке, то есть сначала впаиваются пассивные малогабаритные детали, затем полупроводниковые элементы, а после этого - крупногабаритные детали.

Не следует забывать о том, что микросхему IC1 желательно установить на радиатор. Тепловое сопротивление радиатора рассчитывается по следующей формуле:


1ур - ток зарядки в ускоренном режиме (А); UniiT- напряжение источника питания (В); ^аюГ напряжение аккумуляторной батареи (В); Дг - максимально допустимая разница между температурой радиатора и температурой окружающей среды (обычно примерно 80 °С).

Если в процессе эксплуатации будет выбран режим, в котором окончание зарядки наступает по истечении определенного времени, то необходимый лимит устанавливается с помощью перемычек Т1-ТЗ. В этом случае термистор R10, а также резисторы R7 и R8 не устанавливаются.

При выборе режима зарядки с контролем температуры аккумулятора, необходимо установить термистор R10, а также резисторы R7 и R8. При этом термистор R10 должен

иметь хороший тепловой контакт с заряжаемой аккумуляторной батареей. В данном случае перемычки Т1-ТЗ не устанавливаются. При использовании зарядного устройства в указанном режиме для зарядки аккумуляторных батарей мобильных телефонов устаревших типов в качестве термистора R1G можно использовать терморезистор, входящий в состав аккумулятора. К схеме этот термистор подключается через соответствующие контакты аккумуляторной батареи. В то же время желательно произвести перерасчет величин сопротивлений резисторов R7 и R8 с учетом параметров термистора для каждого типа заряжаемого аккумулятора.

После того, как все компоненты будут установлены на печатной плате, еще раз следует проверить правильность монтажа. В последнюю очередь к печатной плате припаиваются выводы для подключения источника питающего напряжения; а также контакты для подключения заряжаемого аккумулятора.

Плата с размещенными на ней деталями располагается в любой подходящей пластмассовой коробке.

Собранное без ошибок и из исправных деталей зарядное устройство не нуждается в дополнительном налаживании. Однако перед включением прибора и подключением аккумулятора необходимо еще раз проконтролировать, соответствуют ли величины сопротивлений резисторов делителя R1R2 напряжению подключаемого аккумулятора. После этого универсальное зарядное устройство можно подключить к сети и проверить его работоспособность.

При подключении источника питающего напряжения (с отключенным аккумулятором) должен начать светиться светоди-од D4. Если этого не произошло, то необходимо отключить питающее напряжение и еще раз проверить правильность монтажа и исправность элементов конструкции. Если же све-тодиод D4 светится, то к зарядному устройству можно подключать аккумуляторную батарею. После подключения аккумулятора светодиод должен начать мигать.

Окончание зарядки аккумуляторной батареи определяется в соответствии с выбранным режимом работы.

Похожие публикации