Высокоэффективная жидкостная хроматография. Жидкостная хроматография Основные производители оборудования для вэжх

Высокоэффективная жидкостная хроматография (ВЭЖХ) – это метод колоночной хроматографии, в котором подвижной фазой (ПФ) служит жидкость, движущаяся через хроматографическую колонку, заполненную неподвижной фазой (сорбентом). Колонки для ВЭЖХ характеризуются высоким гидравлическим давлением на входе в колонку, поэтому ВЭЖХ иногда называют «жидкостной хроматографией высокого давления».

В зависимости от механизма разделения веществ различают следующие варианты ВЭЖХ: адсорбционную, распределительную, ионообменную, эксклюзионную, хиральную и др.

В адсорбционной хроматографии разделение веществ происходит за счет их различной способности адсорбироваться и десорбироваться с поверхности адсорбента с развитой поверхностью, например, силикагеля.

В распределительной ВЭЖХ разделение происходит за счет различия коэффициентов распределения разделяемых веществ между неподвижной (как правило, химически привитой к поверхности неподвижного носителя) и подвижной фазами.

По полярности ПФ и НФ ВЭЖХ разделяют на нормально-фазовую и обращенно-фазовую.

Нормально-фазовым называют вариант хроматографии, в котором используются полярный сорбент (например, силикагель или силикагель с привитыми NH 2 - или CN-группами) и неполярная ПФ (например, гексан с различными добавками). В обращенно-фазовом варианте хроматографии используют неполярные химически модифицированные сорбенты (например, неполярный алкильный радикал C 18) и полярные подвижные фазы (например, метанол, ацетонитрил).

В ионообменной хроматографии молекулы веществ смеси, диссоциировавшие в растворе на катионы и анионы, разделяются при движении через сорбент (катионит или анионит) за счет их разной скорости обмена с ионными группами сорбента.

В эксклюзионной (ситовой, гель-проникающей, гель-фильтрационной) хроматографии молекулы веществ разделяются по размеру за счет их разной способности проникать в поры неподвижной фазы. При этом первыми из колонки выходят наиболее крупные молекулы (с наибольшей молекулярной массой), способные проникать в минимальное число пор неподвижной фазы, а последними выходят вещества с малыми размерами молекул.

часто разделение протекает не по одному, а по нескольким механизмам одновременно.

Метод ВЭЖХ может применяться для контроля качества любых негазообразных анализируемых веществ. Для проведения анализа используют соответствующие приборы – жидкостные хроматографы.

В состав жидкостного хроматографа обычно входят следующие основные узлы:

– узел подготовки ПФ, включая емкость с подвижной фазой (или емкости с отдельными растворителями, входящими в состав подвижной фазы) и систему дегазации ПФ;

– насосная система;

– смеситель подвижной фазы (при необходимости);

– система ввода пробы (инжектор);

– хроматографическая колонка (может быть установлена в термостате);

– детектор;

– система сбора и обработки данных.

Насосная система

Насосы обеспечивают подачу ПФ в колонку с заданной постоянной скоростью. Состав подвижной фазы может быть постоянным или меняющимся во время анализа. В первом случае процесс называют изократическим, а во втором – градиентным. Перед насосной системой иногда устанавливают фильтры с диаметром пор 0,45 мкм для фильтрации подвижной фазы. Современная насосная система жидкостного хроматографа состоит из одного или нескольких насосов, управляемых компьютером. Это позволяет менять состав ПФ по определенной программе при градиентном элюировании. Смешение компонентов ПФ в смесителе может происходить как при низком давлении (до насосов), так и при высоком давлении (после насосов). Смеситель можно использовать для подготовки ПФ и при изократическом элюировании, однако более точное соотношение компонентов достигается при предварительном смешении компонентов ПФ для изократического процесса. Насосы для аналитической ВЭЖХ позволяют поддерживать постоянную скорость подачи ПФ в колонку в интервале от 0,1 до 10 мл/мин при давлении на входе в колонку до 50 МПа. Целесообразно, однако, чтобы это значение не превышало 20 МПа. Пульсации давления минимизируются специальными демпферными системами, входящими в конструкцию насосов. Рабочие детали насосов изготавливаются из коррозионностойких материалов, что позволяет использовать в составе ПФ агрессивные компоненты.

(ОФС 42-0096-09)

Высокоэффективная жидкостная хроматография (ВЭЖХ) – это метод колоночной хроматографии, в котором подвижной фазой (ПФ) служит жид-

кость, движущаяся через хроматографическую колонку, заполненную непод-

вижной фазой (сорбентом). Колонки для ВЭЖХ характеризуются высоким гидравлическим давлением на входе в колонку, поэтому ВЭЖХ иногда назы-

вают «жидкостной хроматографией высокого давления».

В зависимости от механизма разделения веществ различают следую-

щие варианты ВЭЖХ: адсорбционную, распределительную, ионообменную,

эксклюзионную, хиральную и др.

В адсорбционной хроматографии разделение веществ происходит за счет их различной способности адсорбироваться и десорбироваться с по-

верхности адсорбента с развитой поверхностью, например, силикагеля.

В распределительной ВЭЖХ разделение происходит за счет различия коэффициентов распределения разделяемых веществ между неподвижной

(как правило, химически привитой к поверхности неподвижного носителя) и

подвижной фазами.

По полярности ПФ и НФ ВЭЖХ разделяют на нормально-фазовую и об-

ращенно-фазовую.

Нормально-фазовым называют вариант хроматографии, в котором ис-

пользуются полярный сорбент (например, силикагель или силикагель с при-

витыми NH2 - или CN-группами) и неполярная ПФ (например, гексан с раз-

личными добавками). В обращенно-фазовом варианте хроматографии ис-

пользуют неполярные химически модифицированные сорбенты (например,

неполярный алкильный радикал C18 ) и полярные подвижные фазы (например,

метанол, ацетонитрил).

В ионообменной хроматографии молекулы веществ смеси, диссоции-

ровавшие в растворе на катионы и анионы, разделяются при движении через

сорбент (катионит или анионит) за счет их разной скорости обмена с ионны-

ми группами сорбента.

В эксклюзионной (ситовой, гель-проникающей, гель-фильтрационной)

хроматографии молекулы веществ разделяются по размеру за счет их разной способности проникать в поры неподвижной фазы. При этом первыми из ко-

лонки выходят наиболее крупные молекулы (с наибольшей молекулярной массой), способные проникать в минимальное число пор неподвижной фазы,

а последними выходят вещества с малыми размерами м олекул.

Часто разделение протекает не по одному, а по нескольким механи змам одновременно.

Метод ВЭЖХ может применяться для контроля качества любых нега-

зообразных анализируемых веществ. Для проведения анализа используют соответствующие приборы – жидкостные хроматографы.

В состав жидкостного хроматографа обычно входят следующие основ-

ные узлы:

узел подготовки ПФ, включая емкость с подвижной фазой (или емко-

сти с отдельными растворителями, входящими в состав подвижной фа-

зы) и систему дегазации ПФ;

насосная система;

смеситель подвижной фазы (при необходимости);

система ввода пробы (инжектор);

хроматографическая колонка (может быть установлена в термостате);

– детектор;

система сбора и обработки данных.

Насосная система

Насосы обеспечивают подачу ПФ в колонку с заданной постоянной скоростью. Состав подвижной фазы может быть постоянным или меняю-

щимся во время анализа. В первом случае процесс называют изократическим,

а во втором – градиентным. Перед насосной системой иногда устанавливают

фильтры с диаметром пор 0,45 мкм для фильтрации подвижной фазы. Совре-

менная насосная система жидкостного хроматографа состоит из одного или нескольких насосов, управляемых компьютером. Это позволяет менять со-

став ПФ по определенной программе при градиентном элюировании. Сме-

шение компонентов ПФ в смесителе может происходить как при низком дав-

лении (до насосов), так и при высоком давлении (после насосов). Смеситель можно использовать для подготовки ПФ и при изократическом элюировании,

однако более точное соотношение компонентов достигается при предвари-

тельном смешении компонентов ПФ для изократического процесса. Насосы для аналитической ВЭЖХ позволяют поддерживать постоянную скорость подачи ПФ в колонку в интервале от 0,1 до 10 мл/мин при давлении на входе в колонку до 50 МПа. Целесообразно, однако, чтобы это значение не превы-

шало 20 МПа. Пульсации давления минимизируются специальными демп-

ферными системами, входящими в конструкцию насосов. Рабочие детали на-

сосов изготавливаются из коррозионностойких материалов, что позволяет использовать в составе ПФ агрессивные компоненты.

Смесители

По своей конструкции смесители могут быть статическими или дина-

мическими.

В смесителе происходит образование единой подвижной фазы из от-

дельных растворителей, подаваемых насосами, если необходимая смесь не была приготовлена заранее. Смешивание растворителей обычно происходит самопроизвольно, но иногда применяются системы с принудительным сме-

шиванием.

Инжекторы

Инжекторы могут быть универсальными для ввода проб от

1 мкл до 2 мл или дискретными для ввода пробы только определенного объ-

ема. Оба типа инжекторов могут быть автоматическими («автоинжекторы» или «автосэмплеры»). Инжектор для ввода пробы (раствора) расположен не-

посредственно перед хроматографической колонкой. Конструкция инжектора позволяет изменять направление потока ПФ и осуществлять предварительное введение пробы в петлю определенного объема (обычно от 10 до 100 мкл).

Этот объем указан на маркировке петли. Конструкция инжектора позволяет осуществлять замену петли. Для введения анализируемого раствора в неав-

томатический инжектор используется ручной микрошприц с объемом, значи-

тельно превосходящим объем петли. Избыток введенного раствора, не по-

местившийся в петле, сбрасывается, и в колонку вводится точный и всегда одинаковый объем пробы. Ручное неполное заполнение петли снижает точ-

ность и воспроизводимость дозирования и, следовательно, ухудшает точ-

ность и воспроизводимость хроматографического анализа.

Хроматографическая колонка

Хроматографические колонки обычно представляют собой трубки из нержавеющей стали, стекла или пластика, заполненные сорбентом и закры-

тые с обеих сторон фильтрами с диаметром пор 2–5 мкм. Длина аналитиче-

ской колонки в зависимости от механизма хроматографического разделения может находиться в диапазоне от 5 до 60 см и более (обычно она составляет

10–25 см), внутренний диаметр – от 2 до 10 мм (обычно 4,6 мм). Колонки с внутренним диаметром менее 2 мм используются в микроколоночной хрома-

тографии. Используются также капиллярные колонки с внутренним диамет-

ром около 0,3-0,7 мм. Колонки для препаративной хроматографии имеют внутренний диаметр до 50 мм и более.

Перед аналитической колонкой могут устанавливаться короткие ко-

лонки (предколонки) выполняющие различные вспомогательные функции

(чаще – защита аналитической колонки). Обычно анализ проводят при ком-

натной температуре, однако для увеличения эффективности разделения и со-

кращения продолжительности анализа может быть использовано термоста-

тирование колонок при температурах не выше 60 С. При более высоких температурах возможна деструкция сорбента и изменение состава ПФ.

Неподвижная фаза (сорбент)

В качестве сорбентов обычно применяются:

1. Силикагель, оксид алюминия, пористый графит используются в нор-

мально-фазовой хроматографии. Механизм удерживания в данном слу-

чае – обычно адсорбция;

2. Смолы или полимеры с кислотными или основными группами. Область применения – ионообменная хроматография;

3. Пористый силикагель или полимеры (эксклюзионная хроматография);

4. Химически модифицированные сорбенты (сорбенты с привитыми фа-

зами), приготовленные чаще всего на основе силикагеля. Механизм удерживания в большинстве случаев – распределение между подвиж-

ной и неподвижной фазами;

5. Химически модифицированные хиральные сорбенты, например произ-

водные целлюлозы и амилозы, протеины и пептиды, циклодекстрины,

используемые для разделения энантиомеров (хиральная хроматогра-

Сорбенты с привитыми фазами могут иметь различную степень хими-

ческой модификации. Частицы сорбента могут иметь сферическую или не-

правильную форму и разнообразную пористость.

В качестве привитых фаз наиболее часто применяются:

октильные группы (сорбент октилсилан или С8 );

октадецильные группы (сорбент октадецилсилан

(ODS) или С18 );

фенильные группы (сорбент фенилсилан);

цианопропильные группы (сорбент CN);

аминопропильные группы (сорбент NH2 );

– диольные группы (сорбент диол).

Наиболее часто анализ выполняют на неполярных привитых фазах в

обращенно-фазовом режиме с применением сорбента С18 .

В некоторых случаях более целесообразно применять нормально-

фазовую хроматографию. При этом используют силикагель или полярные привитые фазы («CN», «NH2 », «диол») в сочетании с неполярными раствори-

Сорбенты с привитыми фазами химически устойчивы при значениях pH от 2,0 до 8,0, если другое специально не оговаривается производителем.

Частицы сорбента могут иметь сферическую или неправильную форму и разнообразную пористость. Размер частиц сорбента в аналитической ВЭЖХ обычно составляет 3–10 мкм, в препаративной ВЭЖХ – до 50 мкм и более.

Используются также монолитные сорбенты.

Высокая эффективность разделения обеспечивается высокой площадью поверхности частиц сорбента (которая является следствием их микроскопи-

ческих размеров и наличия пор), а также равномерностью состава сорбента и плотной и равномерной его упаковкой.

Детекторы

Используются различные способы детектирования. В общем случае ПФ с растворенными в ней компонентами после хроматографической колон-

ки попадает в ячейку детектора, где непрерывно измеряется то или иное ее свойство (поглощение в УФ или видимой области спектра, флуоресценция,

показатель преломления, электропроводность и др.). Полученная при этом хроматограмма представляет собой график зависимости некоторого физиче-

ского или физико-химического параметра ПФ от времени.

Наиболее распространенными являются спектрофотометрические де-

текторы (включая диодно-матричные), регистрирующие изменение оптиче-

ской плотности в ультрафиолетовой, видимой и часто в ближней инфракрас-

ной областях спектра от 190 до 800 или 900 нм. Хроматограмма в этом слу-

чае представляет собой зависимость оптической плотности ПФ от времени.

Традиционно используемый спектрофотометрический детектор позво-

ляет проводить детектирование при любой длине волны в его рабочем диапа-

зоне. Применяются также мультиволновые детекторы, позволяющие прово-

дить детектирование при нескольких длинах волн одновременно.

С помощью диодно-матричного детектора можно не только проводить детектирование сразу по нескольким длинам волн, но и практически мгно-

венно (без сканирования) получать оптический спектр ПФ в любой момент времени, что значительно упрощает качественный анализ разделяемых ком-

понентов.

Чувствительность флуоресцентных детекторов примерно в 1000 раз выше чувствительности спектрофотометрических. При этом используется либо собственная флуоресценция, либо флуоресценция соответствующих производных, если само определяемое вещество не флуоресцирует. Совре-

менные флуоресцентные детекторы позволяют не только получать хромато-

граммы, но и регистрировать спектры возбуждения и флуоресценции анали-

зируемых соединений.

Для анализа образцов, не поглощающих в УФ и видимой областях спектра (например, углеводов), используют рефрактометрические детекторы

(рефрактометры). Недостатки этих детекторов – их низкая (по сравнению со спектрофотометрическими детекторами) чувствительность и значительная температурная зависимость интенсивности сигнала (детектор необходимо термостатировать).

Используются также электрохимические детекторы (кондуктометриче-

ские, амперометрические и др.), масс-спектрометрические и Фурье-ИК-

детекторы, детекторы светорассеивания, радиоактивности и некоторые дру-

Подвижная фаза

В качестве ПФ могут применяться разнообразные растворители – как индивидуальные, так и их смеси.

В нормально-фазовой хроматографии обычно применяются жидкие уг-

леводороды (гексан, циклогексан, гептан) и другие относительно неполярные

растворители с небольшими добавками полярных органических соединений,

которые регулируют элюирующую силу ПФ.

В обращено-фазовой хроматографии в состав ПФ входят полярные ор-

ганические растворители (обычно ацетонитрил и метанол) и вода. Для опти-

мизации разделения часто используют водные растворы с определенным зна-

чением рН, в частности буферные растворы. Применяют добавки неоргани-

ческих и органических кислот, оснований и солей и другие соединения (на-

пример, хиральные модификаторы для разделения энантиомеров на ахираль-

ном сорбенте).

Контроль значения рН необходимо осуществлять отдельно для водного компоненента, а не для его смеси с органическим растворителем.

ПФ может состоять из одного растворителя, часто из двух, при необхо-

димости – из трех и более. Состав ПФ указывают как объемное соотношение входящих в нее растворителей. В отдельных случаях может указываться мас-

совое соотношение, что должно быть специально оговорено.

При использовании УФ-спектрофотометрического детектора ПФ не должна иметь выраженного поглощения при выбранной для детектирования длине волны. Предел прозрачности или оптическая плотность при опреде-

ленной длине волны растворителя конкретного изготовителя часто указыва-

ется на упаковке.

На хроматографический анализ большое влияние оказывает степень чистоты ПФ, поэтому предпочтительно применять растворители, выпущен-

ные специально для жидкостной хроматографии (включая воду).

ПФ и анализируемые растворы не должны содержать нерастворивших-

ся частиц и пузырьков газа. Воду, полученную в лабораторных условиях,

водные растворы, предварительно смешанные с водой органические раство-

рители, а также анализируемые растворы необходимо подвергать тонкой фильтрации и дегазации. Для этих целей обычно применяют фильтрование

под вакуумом через инертный по отношению к данному растворителю или раствору мембранный фильтр с размером пор 0,45 мкм.

Система сбора и обработки данных

Современная система обработки данных представляет собой сопря-

женный с хроматографом персональный компьютер с установленным про-

граммным обеспечением, позволяющим регистрировать и обрабатывать хро-

матограмму, а также управлять работой хроматографа и следить за основны-

ми параметрами хроматографической системы.

Перечень условий хроматографирования, подлежащих указанию

В частной фармакопейной статье должны быть приведены размеры ко-

лонки, тип сорбента с указанием размера частиц, температура колонки (если необходимо термостатирование), объем вводимой пробы (объем петли), со-

став ПФ и способ ее приготовления, скорость подачи ПФ, детектор и усл овия детектирования, описание градиентного режима (если используется), время хроматографирования.

ИОНООБМЕННАЯ И ИОННАЯ ВЭЖХ

Ионообменная хроматография используется для анализа как органиче-

ских (гетероциклические основания, аминокислоты, белки и др.), так и неор-

ганических (различные катионы и анионы) соединений. Разделение компо-

нентов анализируемой смеси в ионообменной хроматографии основано на обратимом взаимодействии ионов анализируемых веществ с ионными груп-

пами сорбента. В качестве сорбентов используются аниониты или катиони-

ты. Эти сорбенты представляют собой, в основном, либо полимерные ионо-

обменные смолы (обычно сополимеры стирола и дивинилбензола с приви-

тыми ионными группами), либо силикагели с привитыми ионообменными группами. Сорбенты с группами -(СН2 )3 N+ Х– используются для разделения анионов, а сорбенты с группами -(СН2 )SО3 – Н+ – для разделения катионов.

Обычно для разделения анионов применяют полимерные смолы, а для разд е-

ления катионов – модифицированные силикагели.

В качестве ПФ в ионообменной хроматографии применяют водные растворы кислот, оснований и солей. Обычно используются буферные рас-

творы, позволяющие поддерживать определенные значения рН. Возможно также использование небольших добавок смешивающихся с водой органиче-

ских растворителей – ацетонитрила, метанола, этанола, тетрагидрофурана.

Ионная хроматография - вариант ионообменной хроматографии, в

котором для определения концентрации ионов анализируемого вещества ис-

пользуется кондуктометрический детектор. Для высокочувствительного оп-

ределения изменений электропроводности проходящей через детектор ПФ фоновая электропроводность ПФ должна быть низкой.

Существуют два основных варианта ионной хроматографии.

Первый из них основан на подавлении электропроводности электроли-

та ПФ с помощью второй ионообменной колонки, находящейся между ана-

литической колонкой и детектором. В этой колонке происходит нейтрализа-

ция ПФ и анализируемые соединения попадают в ячейку детектора в деиони-

зированной воде. Детектируемые ионы являются единственными ионами,

обеспечивающими проводимость ПФ. Недостаток подавляющей колонки – необходимость ее регенерации через достаточно короткие промежутки вре-

мени. Подавляющая колонка может быть заменена непрерывно действую-

щим мембранным подавителем, в котором состав мембраны непрерывно об-

новляется потоком регенерирующего раствора, движущегося в направлении,

противоположном направлению потока ПФ.

Второй вариант ионной хроматографии – одноколоночная ионная хро-

матография. В этом варианте используется ПФ с очень низкой электропро-

водностью. В качестве электролитов широко применяют слабые органиче-

ские кислоты – бензойную, салициловую или изофталевую.

ЭКСКЛЮЗИОННАЯ ВЭЖХ

Эксклюзионная хроматография (гель-хроматография) – особый вариант ВЭЖХ, основанный на разделении молекул по их размерам. Распределение

молекул между неподвижной и подвижной фазами основано на размерах мо-

лекул и частично на их форме и полярности. Для разделения используют по-

ристые сорбенты – полимеры, силикагель, пористые стекла и полисахариды.

Размер частиц сорбентов 5–10 мкм.

Преимуществами пористых стекол и силикагеля являются быстрая диффузия ПФ и молекул анализируемого вещества в поры, устойчивость в различных условиях (даже при высоких температурах). Полимерные сорбен-

ты представляют собой сополимеры стирола и дивинилбензола (это гидро-

фобные сорбенты, используемые с неполярными подвижными фазами) и

гидрофильные гели, получаемые из сульфированного дивинилбензола или полиакриламидных смол.

Возможны два предельных типа взаимодействия молекул с пористой неподвижной фазой. Молекулы, размер которых больше среднего диаметр а пор, вообще не проникают в сорбент и элюируются вместе с подвижной фа-

зой первыми. Молекулы с диаметром значительно меньше размера пор сор-

бента свободно проникают в него, остаются в неподвижной фазе наибольшее время и элюируются последними. Молекулы средних размеров проникают в поры сорбента в зависимости от размера и частично в зависимости от своей формы. Они элюируются с различными временами удерживания между са-

мыми крупными и самыми мелкими молекулами. Разделение компонентов хроматографируемого образца происходит в результате повторяющихся ак-

тов диффузии компонентов образца в поры сорбента, и обратно.

В эксклюзионной хроматографии для характеристики удерживания ис-

пользуется объем удерживания, равный произведению скорости потока ПФ на время удерживания.

Подвижная фаза. Выбор ПФ зависит от типа сорбента. Эксклюзион-

ная хроматография в целом делится на гель-фильтрационную и гель-

проникающую хроматографию.

Метод гель-фильтрационной хроматографии используют для разделе-

ния водорастворимых соединений на гидрофильных сорбентах. Подвижные фазы представляют собой водные буферные растворы с заданным значением рН.

В гель-проникающей хроматографии применяются гидрофобные сор-

бенты и неполярные органические растворители (толуол, дихлорметан, тет-

рагидрофуран). Этот метод используют для анализа соединений, малораство-

римых в воде.

Детекторы. В качестве детекторов в эксклюзионной хроматографии используются дифференциальные рефрактометрические детекторы, а также спектрофотометрические детекторы (в том числе, в ИК-области спектра).

Применяются также вискозиметрический и проточный лазерный детекторы.

Эти детекторы в комбинации с рефрактометром или другим концентрацион-

ным детектором позволяют непрерывно определять молекулярную массу по-

лимера в ПФ.

УЛЬТРАЭФФЕКТИВНАЯ ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ

Ультраэффективная жидкостная хроматография представляет собой вариант жидкостной хроматографии, отличающийся большей эффективно-

стью по сравнению с классической ВЭЖХ.

Особенностью ультраэффективной жидкостной хроматографии являет-

ся использование сорбентов с размером частиц от 1,5 до 2 мкм. Размеры хро-

матографических колонок обычно составляют от 50 до 150 мм в длину и от 1

до 4 мм в диаметре. Объем вводимой пробы может составлять от 1 до 50 мкл.

Хроматографическое оборудование, используемое в классическом ва-

рианте ВЭЖХ, обычно специально адаптировано для этого вида хроматогра-

Оборудование, предназначенное для ультраэффективной жидкостной хроматографии, может использоваться и в классическом варианте ВЭЖХ.

(преимущественно межмолекулярных) на границе раздела фаз. Как способ анализа, ВЭЖХ входит в состав группы методов, которая, ввиду сложности исследуемых объектов, включает предварительное разделение исходной сложной смеси на относительно простые. Полученные простые смеси анализируются затем обычными физико-химическими методами или специальными методами, созданными для хроматографии .

Метод ВЭЖХ находит широкое применение в таких областях, как химия , нефтехимия , биология , биотехнология , медицина , пищевая промышленность , охрана окружающей среды , производство лекарственных препаратов и во многих других.

По механизму разделения анализируемых или разделяемых веществ ВЭЖХ делится на адсорбционную , распределительную , ионообменную , эксклюзионную , лигандообменную и другие.

Следует иметь в виду, что в практической работе разделение часто протекает не по одному, а по нескольким механизмам одновременно. Так, эксклюзионное разделение бывает осложнено адсорбционными эффектами, адсорбционное - распределительными, и наоборот. При этом чем больше различие веществ в пробе по степени ионизации , основности или кислотности , по молекулярной массе, поляризуемости и другим параметрам, тем больше вероятность проявления другого механизма разделения для таких веществ.

Нормально-фазовая ВЭЖХ

Неподвижная фаза более полярна, чем подвижная, поэтому в составе элюента преобладает неполярный растворитель:

  • Гексан:изопропанол = 95:5 (для малополярных веществ)
  • Хлороформ:метанол = 95:5 (для среднеполярных веществ)
  • Хлороформ:метанол = 80:20 (для сильнополярных веществ)

Обращённо-фазовая ВЭЖХ

Неподвижная фаза менее полярна, чем подвижная, поэтому в составе элюента почти всегда присутствует вода. В этом случае всегда можно обеспечить полное растворение БАС в подвижной фазе, почти всегда возможно использовать УФ-детектирование, почти все подвижные фазы взаимно смешиваются, можно использовать градиентное элюирование, можно быстро переуравновесить колонку, колонку можно регенерировать.

Обычными элюентами для обращенно-фазовой ВЭЖХ являются:

  • Ацетонитрил:вода
  • Метанол:вода
  • Изопропанол:вода

Матрицы для ВЭЖХ

В качестве матриц в ВЭЖХ используются неорганические соединения, такие как оксид кремния (силикагель) или оксид алюминия , либо органические полимеры, такие как полистирол (сшитый дивинилбензолом) или полиметакрилат. Силикагель, конечно, в настоящее время общепризнан.

Основные характеристики матрицы:

  • Размер частиц (мкм);
  • Размер внутренних пор (Å, нм).

Получение силикагеля для ВЭЖХ:

  1. Формование микросфер поликремневой кислоты;
  2. Сушка частиц силикагеля;
  3. Воздушное сепарирование.

Частицы сорбента:

  • Регулярные (сферические): выше устойчивость к давлению, выше стоимость;
  • Несферические: ниже устойчивость к давлению.

Размер пор в ВЭЖХ - один из наиболее важных параметров. Чем меньше размер пор, тем хуже их проницаемость для молекул элюируемых веществ. А следовательно, тем хуже сорбционная емкость сорбентов. Чем крупнее поры, тем, во-первых, меньше механическая устойчивость частиц сорбента, а, во-вторых, тем меньше сорбционная поверхность, следовательно, хуже эффективность.

Прививки неподвижной фазы

Нормально-фазовая ВЭЖХ:

  • Неподвижная фаза с пропилнитрильной прививкой (нитрильной);
  • Неподвижная фаза с пропиламинной прививкой (аминной).

Обращенно-фазовая ВЭЖХ:

  • Неподвижная фаза с алкильной прививкой;
  • Неподвижная фаза с алкилсилильной прививкой.

Энд-кэппирование - защита непривитых участков сорбента дополнительной прививкой «маленькими» молекулами. Гидрофобный энд-кэппинг (С1, С2): выше селективность, хуже смачиваемость; гидрофильный энд-кэппинг (диол): ниже селективность, выше смачиваемость.

Детекторы для ВЭЖХ

  • Ультрафиолетовый
  • Диодно-матричный
  • Флуоресцентный
  • Электрохимический
  • Рефрактометрический
  • Масс-селективный

Ссылки


Wikimedia Foundation . 2010 .

  • Хроматография
  • Распределительная хроматография

Смотреть что такое "" в других словарях:

    высокоэффективная жидкостная хроматография - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN high performance liquid chromatographyHPLC … Справочник технического переводчика

    высокоэффективная жидкостная хроматография - Термин высокоэффективная жидкостная хроматография Термин на английском high performance liquid chromatography Синонимы Аббревиатуры ВЭЖХ, HPLC Связанные термины адсорбция, олигопептид, протеомика, сорбент, фуллерен, эндоэдральный, хроматография… …

    ВЫСОКОЭФФЕКТИВНАЯ ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ - жидкостная хроматография, в к рой для повышения эффективности разделения р ритель (элюент) под давлением (более 3х107 Па) прокачивают через колонки, заполненные сорбентом с частицами малого диаметра (до 1 мкм), а также используют перфузионные… …

    ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ - вид хрома тографии, в к рой подвижной фазой служитжидкость (элюент), а неподвижной та. сорбент, тв. носитель с нанесённой на его поверхность жидкостью или гель. Осуществляют в колонке, заполненной сорбентом (колоночная хроматография), на плоской… … Естествознание. Энциклопедический словарь

    Хроматография - [κρώμα (υрома) цвет] процесс, основанный на неодинаковой способности отдельных компонентов смеси (жидкой или газообразной) удерживаться на поверхности адсорбента как при поглощении их из потока носителя, так и при… … Геологическая энциклопедия

    Хроматография - (от др. греч … Википедия

    хроматография - Термин хроматография Термин на английском chromatography Синонимы Аббревиатуры Связанные термины высокоэффективная жидкостная хроматография, клатрат, лаборатория на чипе, порометрия, протеом, протеомика, сорбент, фермент, фуллерен, эндоэдральный… … Энциклопедический словарь нанотехнологий

    ИОНООБМЕННАЯ ХРОМАТОГРАФИЯ - жидкостная хроматография, основанная на разл. способности разделяемых ионов к ионному обмену с фиксир. ионами сорбента, образующимися в результате диссоциации ионогенных групп последнего. Для разделения катионов используют катиониты, для… … Химическая энциклопедия

    ВЭЖХ - высокоэффективная жидкостная хроматография … Словарь сокращений русского языка

    ВЭЖХ - Высокоэффективная жидкостная хроматография (ВЭЖХ) один из эффективных методов разделения сложных смесей веществ, широко применяемый как в аналитической химии, так и в химической технологии. Основой хроматографического разделения является участие … Википедия

Книги

  • Практическая высокоэффективная жидкостная хроматография , Вероника Р. Майер. Представляем читателю 5-е издание книги, которое расширено за счет современных методов и оборудования. В книге многое доработано и добавлено большое количество ссылок. Те места в тексте, где…

Жидкостно-адсорбционная хроматография на колонке

Разделение смеси веществ в адсорбционной колонке происходит в результате различия их в сорбируемости на данном адсорбенте (в соответствии с законом адсорбционного замещения, установленного М. С. Цветом).

Адсорбентами являются пористые тела с сильно развитой внутренней поверхностью, удерживающие жидкости с помощью межмолекулярных и поверхностных явлений. Это могут быть полярные и неполярные неорганические и органические соединения. К полярным адсорбентам относятся силикагель (высушенная желатинообразная двуокись кремния), оксид алюминия, карбонат кальция, целлюлоза, крахмал и др. Неполярные сорбенты - активированный уголь, порошок резины и множество других, полученных синтетическим путем.

К адсорбентам предъявляют следующие требования: S они не должны вступать в химические реакции с подвижной фазой и разделяемыми веществами; S должны обладать механической прочностью; S зерна адсорбента должны быть одинаковой степени дисперсности.

При выборе условий для хроматографического процесса учитывают свойства адсорбента и адсорбируемых веществ.

В классическом варианте жидкостной колоночной хроматографии (ЖКХ) через хроматографическую колонку, представляющую собой стеклянную трубку диаметром 0,5 - 5 см и длиной 20 - 100 см, заполненную сорбентом (НФ), пропускают элюент (ПФ). Элюент движется под воздействием силы тяжести. Скорость его движения можно регулировать имеющимся внизу колонки краном. Анализируемую смесь помещают в верхнюю часть колонки. По мере продвижения пробы по колонке происходит разделение компонентов. Через определенные промежутки времени отбирают фракции выделившегося из колонки элюента, который анализируют каким-либо методом, позволяющим измерять концентрации определяемых веществ.

Колоночная адсорбционная хроматография в настоящее время применяется, главным образом не как самостоятельный метод анализа, а как способ предварительного (иногда и конечного) разделения сложных смесей на более простые, т.е. для подготовки к анализу другими методами (в том числе и хроматографическими). Например, на колонке с окисью алюминия разделяют смесь токоферолов, пропускают элюент и собирают фракцию а-токоферола для последующего определения фотометрическим методом.

Хроматографическое разделение смеси на колонке вследствие медленного продвижения ПФ занимает много времени. Для ускорения процесса хроматографирование проводят под давлением. Этот метод называют высокоэффективной жидкостной хроматографией (ВЖХ)

Модернизация аппаратуры, применяемой в классической жидкостной колоночной хроматографии, сделала ее одним из перспективных и современных методов анализа. Высокоэффективная жидкостная хроматография является удобным способом разделения, препаративного выделения и проведения качественного и количественного анализа нелетучих термолабильных соединений как с малой, так с большой молекулярной массой.


В зависимости от типа применяемого сорбента в данном методе используют 2 варианта хроматографирования: на полярном сорбенте с использованием неполярного элюента (вариант прямой фазы) и на неполярном сорбенте с использованием полярного элюента - так называемая об-ращенно-фазовая высокоэффективная жидкостная хроматография (Оф ВЖХ).

При переходе элюента к элюенту равновесие в условиях ОфВЖХ устанавливается во много раз быстрее, чем в условиях полярных сорбенгов и неводных ПФ. Вследствие этого, а также удобства работы с водными и водно-спиртовыми элюентами, ОфВЖХ получила в настоящее время большую популярность. Большинство анализов при помощи ВЖХ проводят именно этим методом.

Аппаратура для ВЖХ

Комплект современного оборудования для ВЖХ, как правило, состоит из двух насосов 3,4 (рис. 7.1.1.1), управляемых микропроцессором 5, и подающих элюент по определенной программе. Насосы создают давление до 40 МПа. Проба вводится через специальное устройство (инжектор) 7 непосредственно в поток элюента. После прохождения через хроматографическую колонку 8 вещества детектируются высокочувствительным проточным детектором 9, сигнал которого регистрируется и обрабатывается микро-ЭВМ 11. При необходимости, в момент выхода пика автоматически отбираются фракции.

Колонки для ВЖХ выполняют из нержавеющей стали с внутренним диаметром 2 - 6 мм и длиной 10-25 см. Колонки заполняют сорбентом (НФ). В качестве НФ используются силикагель, оксид алюминия или модифицированные сорбенты. Модифицируют обычно силикагель, внедряя химическим путем в его поверхность различные функциональные группы.

Детекторы. Регистрация выхода из колонки отдельного компонента производится с помощью детектора. Для регистрации можно использовать изменение любого аналитического сигнала, идущего от подвижной фазы и связанного с природой и количеством компонента смеси. В жидкостной хроматографии используют такие аналитические сигналы, как светопоглощение или светоиспускание выходящего раствора (фотометрические и флуориметрические детекторы), показатель преломления (рефрактометрические детекторы), потенциал и электрическая проводимость (электрохимические детекторы) и др.

Непрерывно детектируемый сигнал регистрируется самописцем. Хро-матограмма представляет собой зафиксированную на ленте самописца последовательность сигналов детектора, вырабатываемых при выходе из колонки отдельных компонентов смеси. В случае разделения смеси на внешней хроматограмме видны отдельные пики. Положение пика на хромато-грамме используют для целей идентификации вещества, высоту или площадь пика - для целей количественного определения.

Качественный анализ

Важнейшие характеристики хроматограммы - время удерживания tR и связанный с ней удерживаемый объем - отражают природу веществ, их способность к сорбции на материале неподвижной фазы и, следовательно, при постоянстве условий хроматографирования являются средством идентификации вещества. Для данной колонки с определенными скоростью потока и температурой время удерживания каждого соединения постоянно (рис.7.1.1.2), где t.R(A) - время удерживания компонента А анализируемой смеси с момента ввода в колонку до появления на выходе из колонки максимума пика, 1К(вс) - время удерживания внутреннего стандарта (первоначально отсутствующее в анализируемой смеси вещество), h - высота пика (мм), аш - ширина пика на половине его высоты, мм.

Для идентификации вещества по хроматограмме обычно используют стандартные образцы или чистые вещества. Сравнивают время удерживания неизвестного компонента IR* с временем удерживания IRCT известных веществ. Но более надежна идентификация по измерению относительного времени удерживания

При этом в колонку сначала вводят известное вещество (внутренний стандарт) и измеряют время его удерживания tR(Bc), затем хроматографиче-ски разделяют (хроматографируют) исследуемую смесь, в которую предварительно добавляют внутренний стандарт. Относительное время удерживания определяют по формуле (7.1.1.1).

Количественный анализ

В основе этого анализа лежит зависимость высоты пика h или его площади S от количества вещества. Для узких пиков предпочтительнее измерение h, для широких размытых - S. Площадь пика измеряют разными способами: умножением высоты пика (h) на его ширину (ai/2), измеренную на половине его высоты (рис.7.2.3); планиметрированием; с помощью интегратора. Электрическими или электронными интеграторами снабжены современные хроматографы.

Для определения содержания веществ в пробе используют в основном три метода: метод абсолютной градуировки, метод внутренней нормализации и метод внутреннего стандарта.

Метод абсолютной градуировки основан на предварительном определении зависимости между количеством введенного вещества и площадью или высотой пика на хроматограмме. В хроматограмму вводят известное количество градуировочной смеси и определяют площади или высота полученных пиков. Строят график зависимости площади или высоты пика от количества введенного вещества. Анализируют исследуемый образец, измеряют площадь или высоту пика определяемого компонента и на основании градировочного графика рассчитывают его количество.

Этот метод дает информацию только об относительном содержании компонента в смеси, но не позволяет определить его абсолютную величину.

Метод внутреннего стандарта основан на сравнении выбранного параметра пика анализируемого вещества с тем же параметром стандартного вещества, введенного в пробу в известном количестве. В исследуемую пробу вводят известное количество такого стандартного вещества, пик которого достаточно хорошо отделяется от пиков компонентов исследуемой смеси

В последних двух методах требуется введение поправочных коэффициентов, характеризующих чувствительность используемых детекторов к анализируемым веществам. Для разных типов детекторов и разных веществ коэффициент чувствительности определяется экспериментально.

В жидкостной адсорбционной хроматографии используется также анализ фракций растворов, собранных в момент выхода вещества из колонки. Анализ может быть проведен различными физико-химическими методами.

Жидкостную адсорбционную хроматографию применяют в первую очередь для разделения органических веществ. Этим методом весьма успешно изучают состав нефти, углеводородов, эффективно разделяют-транс- и цис- изомеры, алкалоиды и др. С помощью ВЖХ можно определять красители, органические кислоты, аминокислоты, сахара, примеси пестицидов и гербицидов, лекарственных веществ и других загрязнителей в пищевых продуктах.

(преимущественно межмолекулярных) на границе раздела фаз. Как способ анализа, ВЭЖХ входит в состав группы методов, которая, ввиду сложности исследуемых объектов, включает предварительное разделение исходной сложной смеси на относительно простые. Полученные простые смеси анализируются затем обычными физико-химическими методами или специальными методами, созданными для хроматографии .

Метод ВЭЖХ находит широкое применение в таких областях, как химия , нефтехимия , биология , биотехнология , медицина , пищевая промышленность , охрана окружающей среды , производство лекарственных препаратов и во многих других.

По механизму разделения анализируемых или разделяемых веществ ВЭЖХ делится на адсорбционную , распределительную , ионообменную , эксклюзионную , лигандообменную и другие.

Следует иметь в виду, что в практической работе разделение часто протекает не по одному, а по нескольким механизмам одновременно. Так, эксклюзионное разделение бывает осложнено адсорбционными эффектами, адсорбционное - распределительными, и наоборот. При этом чем больше различие веществ в пробе по степени ионизации , основности или кислотности , по молекулярной массе, поляризуемости и другим параметрам, тем больше вероятность проявления другого механизма разделения для таких веществ.

Нормально-фазовая ВЭЖХ

Неподвижная фаза более полярна, чем подвижная, поэтому в составе элюента преобладает неполярный растворитель:

  • Гексан:изопропанол = 95:5 (для малополярных веществ)
  • Хлороформ:метанол = 95:5 (для среднеполярных веществ)
  • Хлороформ:метанол = 80:20 (для сильнополярных веществ)

Обращённо-фазовая ВЭЖХ

Неподвижная фаза менее полярна, чем подвижная, поэтому в составе элюента почти всегда присутствует вода. В этом случае всегда можно обеспечить полное растворение БАС в подвижной фазе, почти всегда возможно использовать УФ-детектирование, почти все подвижные фазы взаимно смешиваются, можно использовать градиентное элюирование, можно быстро переуравновесить колонку, колонку можно регенерировать.

Обычными элюентами для обращенно-фазовой ВЭЖХ являются:

  • Ацетонитрил:вода
  • Метанол:вода
  • Изопропанол:вода

Матрицы для ВЭЖХ

В качестве матриц в ВЭЖХ используются неорганические соединения, такие как оксид кремния (силикагель) или оксид алюминия , либо органические полимеры, такие как полистирол (сшитый дивинилбензолом) или полиметакрилат. Силикагель, конечно, в настоящее время общепризнан.

Основные характеристики матрицы:

  • Размер частиц (мкм);
  • Размер внутренних пор (Å, нм).

Получение силикагеля для ВЭЖХ:

  1. Формование микросфер поликремневой кислоты;
  2. Сушка частиц силикагеля;
  3. Воздушное сепарирование.

Частицы сорбента:

  • Регулярные (сферические): выше устойчивость к давлению, выше стоимость;
  • Несферические: ниже устойчивость к давлению.

Размер пор в ВЭЖХ - один из наиболее важных параметров. Чем меньше размер пор, тем хуже их проницаемость для молекул элюируемых веществ. А следовательно, тем хуже сорбционная емкость сорбентов. Чем крупнее поры, тем, во-первых, меньше механическая устойчивость частиц сорбента, а, во-вторых, тем меньше сорбционная поверхность, следовательно, хуже эффективность.

Прививки неподвижной фазы

Нормально-фазовая ВЭЖХ:

  • Неподвижная фаза с пропилнитрильной прививкой (нитрильной);
  • Неподвижная фаза с пропиламинной прививкой (аминной).

Обращенно-фазовая ВЭЖХ:

  • Неподвижная фаза с алкильной прививкой;
  • Неподвижная фаза с алкилсилильной прививкой.

Энд-кэппирование - защита непривитых участков сорбента дополнительной прививкой «маленькими» молекулами. Гидрофобный энд-кэппинг (С1, С2): выше селективность, хуже смачиваемость; гидрофильный энд-кэппинг (диол): ниже селективность, выше смачиваемость.

Детекторы для ВЭЖХ

  • Ультрафиолетовый
  • Диодно-матричный
  • Флуоресцентный
  • Электрохимический
  • Рефрактометрический
  • Масс-селективный

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Высокоэффективная жидкостная хроматография" в других словарях:

    высокоэффективная жидкостная хроматография - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN high performance liquid chromatographyHPLC … Справочник технического переводчика

    Термин высокоэффективная жидкостная хроматография Термин на английском high performance liquid chromatography Синонимы Аббревиатуры ВЭЖХ, HPLC Связанные термины адсорбция, олигопептид, протеомика, сорбент, фуллерен, эндоэдральный, хроматография… …

    Жидкостная хроматография, в к рой для повышения эффективности разделения р ритель (элюент) под давлением (более 3х107 Па) прокачивают через колонки, заполненные сорбентом с частицами малого диаметра (до 1 мкм), а также используют перфузионные… …

    Вид хрома тографии, в к рой подвижной фазой служитжидкость (элюент), а неподвижной та. сорбент, тв. носитель с нанесённой на его поверхность жидкостью или гель. Осуществляют в колонке, заполненной сорбентом (колоночная хроматография), на плоской… … Естествознание. Энциклопедический словарь

    - [κρώμα (υрома) цвет] процесс, основанный на неодинаковой способности отдельных компонентов смеси (жидкой или газообразной) удерживаться на поверхности адсорбента как при поглощении их из потока носителя, так и при… … Геологическая энциклопедия

    - (от др. греч … Википедия

    Термин хроматография Термин на английском chromatography Синонимы Аббревиатуры Связанные термины высокоэффективная жидкостная хроматография, клатрат, лаборатория на чипе, порометрия, протеом, протеомика, сорбент, фермент, фуллерен, эндоэдральный… … Энциклопедический словарь нанотехнологий

    Жидкостная хроматография, основанная на разл. способности разделяемых ионов к ионному обмену с фиксир. ионами сорбента, образующимися в результате диссоциации ионогенных групп последнего. Для разделения катионов используют катиониты, для… … Химическая энциклопедия

    ВЭЖХ - высокоэффективная жидкостная хроматография … Словарь сокращений русского языка

    Высокоэффективная жидкостная хроматография (ВЭЖХ) один из эффективных методов разделения сложных смесей веществ, широко применяемый как в аналитической химии, так и в химической технологии. Основой хроматографического разделения является участие … Википедия

Книги

  • Практическая высокоэффективная жидкостная хроматография , Вероника Р. Майер. Представляем читателю 5-е издание книги, которое расширено за счет современных методов и оборудования. В книге многое доработано и добавлено большое количество ссылок. Те места в тексте, где…
Похожие публикации