Виды катушек тесла. Самодельный трансформатор тесла с подробной схемой, описанием и деталями

Генератор Тесла - это прекрасная альтернатива солнечным панелям. Основным его достоинством считаются простота сборки, небольшие затраты на изготовление и минимальное количество материалов. Понятно, что эта разновидность генератора будет производить меньше электричества, нежели солнечная панель, однако можно сделать сразу несколько и получить неплохое дополнение в виде бесплатной энергии.

Происхождение генератора Тесла

Знаменитый ученый Никола Тесла полагал, что наш мир полностью состоит из разных форм энергии, для получения и эксплуатации которой нужно собрать улавливающий прибор. Он успел разработать множество конструкций генераторов бестопливного типа. Один из его проектов можно реализовать своими руками в домашних условиях .

Принцип функционирования бестопливного генератора Тесла состоит в том, что он применяет энергию солнца как источник положительно заряженных электронов, а энергию земли как источник электронов с отрицательным потенциалом. В результате образуется разница потенциалов, с помощью которой и создается электроток.

Система состоит из пары электродов, один из которых улавливает энергетические источники, а второй применяется в качестве заземления. Роль накопителя в конструкции играет емкостный конденсатор или линий-ионный аккумулятор (более современные вариант).

Как уже было сказано, генератор Тесла требует минимум материалов. Для его создания нужно взять следующее:

  • провода;
  • фанерные или картонные листы;
  • фольга;
  • резистор;
  • емкостный конденсатор.

Процесс сборки генератора Тесла своими руками не очень сложный. Он состоит из нескольких этапов.

Устройство заземления

Для начала необходимо позаботиться о надежном и правильном заземлении. Если самодельное

оборудование будет эксплуатироваться в деревне или на даче, то для создания хорошего заземления нужно просто вбить поглубже металлический штырь в землю. Также можно подключить установку к конструкциям, которые уходят в почву на достаточную глубину.

Если генератор будет применяться в городской квартире, то тут для заземления можно воспользоваться газовыми или водопроводными трубами. Кроме того, можно подключиться и к электрическим розеткам, которые, в свою очередь, обладают заземлением.

Изготовление приемника электронов

Затем нужно сделать прибор, улавливающий положительные частицы, которые вырабатываются источником света. Подобным источником может выступать не только солнце, но и осветительное оборудование. Генератор Тесла может вырабатывать электричество даже от дневного света, причем и в пасмурную погоду.

Приемник включает в свою конструкцию кусок фольги, зафиксированный на листе картона или фанеры. Когда световые частицы будут попадать на фольгу, в ее структуре начнут формироваться токи. Объем получаемой энергии зависит от площади фольги. Для увеличения показателей мощности установки можно собрать сразу несколько приемников и обеспечить их параллельное соединение.

Подсоединение схемы устройства

На следующей стадии необходимо подключить контакты друг к другу. Это делать нужно через емкостный конденсатор. Если рассматривать электроконденсатор, то у него на корпусе есть обозначения полярностей. К «минусовому» контакту следует подсоединить заземление, а к «плюсовому» зафиксировать провод от фольги. После этого начнется зарядка конденсатора, с которого потом уже можно будет выделять электричество. В том случае, если мощность конденсатора окажется слишком высокой, то он может взорваться от чрезмерного количества энергии. Для того чтобы предотвратить проблемы, электроцепь дополняют специальным ограничительным резистором.

Если говорить о классическом конденсаторе из керамики, то в этом случае полярность не имеет никакого значения.

Кроме того, можно попытаться устроить систему не с помощью конденсатора, а с помощью литиевой батарейки. Тогда у вас будет возможность аккумулировать гораздо большее количество энергии.

На этом сборка генератора завершается. Для проверки напряжения в конденсаторе можно воспользоваться мультиметром. В том случае, если оно достаточное, можно попытаться подсоединить к установке небольшой светодиод. Такую генераторную установку можно применять для самых разных проектов, например, для изготовления устройств ночного освещения на основе светодиодов, которое не будет нуждаться в питании.

По сути, вместо фольги также можно воспользоваться и иными материалами:

  • алюминиевыми листами;
  • медными листами.

Если крыша вашего дома сделана из алюминия, то можно попытаться включить ее в схему генератора и посмотреть, какое количество энергии она может выработать.

Трансформатор Тесла (принцип работы аппарата рассмотрим далее) был запатентован в 1896-м году, 22 сентября. Аппарат представили как прибор, производящий электрические токи высокого потенциала и частоты. Устройство было изобретено Николой Тесла и названо его именем. Рассмотрим далее этот аппарат подробнее.

Трансформатор Тесла: принцип работы

Суть действия прибора можно объяснить на примере всем известных качелей. При их раскачивании в условиях принудительных которая будет максимальной, станет пропорциональной прилагаемому усилию. При раскачивании в свободном режиме максимальная амплитуда при тех же усилиях многократно возрастет. Такова суть и трансформатора Тесла. В качестве качелей в аппарате используется колебательный вторичный контур. Генератор играет роль прилагаемого усилия. При их согласованности (подталкивании в строго необходимые периоды времени) обеспечивается задающий генератор либо первичный контур (в соответствии с устройством).

Описание

Простой трансформатор Тесла включает в себя две катушки. Одна - первичная, другая - вторичная. Также Тесла состоит из тороида (применяется не всегда), конденсатора, разрядника. Последний - прерыватель - встречается в английском варианте Spark Gap. Трансформатор Тесла также содержит "выход" - терминал.

Катушки

Первичная содержит, как правило, провод большого диаметра либо медную трубку с несколькими витками. Во вторичной катушке имеется кабель меньшего сечения. Его витков - около 1000. Первичная катушка может иметь плоскую (горизонтальную), коническую или цилиндрическую (вертикальную) форму. Здесь, в отличие от обычной трансформатора, нет ферромагнитного сердечника. За счет этого существенно снижается взаимоиндукция между катушками. Вместе с конденсатором первичный элемент формирует колебательный контур. В него включен разрядник - нелинейный элемент.

Вторичная катушка тоже формирует колебательный контур. В качестве конденсатора выступают тороидная и собственная катушечная (межвитковая) емкости. Вторичная обмотка часто покрыта слоем лака либо эпоксидной смолы. Это делается во избежание электрического пробоя.

Разрядник

Схема трансформатора Тесла включает в себя два массивных электрода. Эти элементы должны обладать устойчивостью к протеканию сквозь больших токов. Обязательно наличие регулируемого зазора и хорошего охлаждения.

Терминал

В резонансный трансформатор Тесла этот элемент может быть инсталлирован в разном исполнении. Терминал может представлять собой сферу, заточенный штырь или диск. Он предназначается для получения искровых предсказуемых разрядов с большой длиной. Таким образом, два связанных колебательных контура образуют трансформатор Тесла.

Энергия из эфира - одна из целей функционирования аппарата. Изобретатель прибора стремился достичь волнового числа Z в 377 Ом. Он изготавливал катушки все большего размера. Нормальная (полноценная) работа трансформатора Тесла обеспечивается в случае, когда оба контура настроены на одну частоту. Как правило, в процессе корректировки осуществляется подстройка первичного под вторичный. Это достигается за счет изменения емкости конденсатора. Также меняется количество витков у первичной обмотки до появления на выходе максимального напряжения.

В будущем предполагается создать несложный трансформатор Тесла. Энергия из эфира будет работать на человечество в полной мере.

Действие

Трансформатор Тесла функционирует в импульсном режиме. Первая фаза - конденсаторный заряд до напряжения пробоя разрядного элемента. Вторая - генерация высокочастотных колебаний в первичном контуре. Включенный параллельно разрядник замыкает трансформатор (источник питания), исключая его из контура. В противном случае он будет вносить определенные потери. Это, в свою очередь, снизит добротность первичного контура. Как показывает практика, такое влияние существенно уменьшает длину разряда. В связи с этим в построенной грамотно схеме разрядник всегда ставится параллельно источнику.

Заряд

Его производит внешний источник на основе низкочастотного повышающего трансформатора. Конденсаторная емкость выбирается так, чтобы она составляла вместе с индуктором определенный контур. Частота его резонанса должна быть равна высоковольтному контуру.

На практике все несколько иначе. Когда осуществляется расчет трансформатора Теслы, не учитывается энергия, которая пойдет на накачку второго контура. Напряжение заряда ограничивается напряжением у пробоя разрядника. Его (если элемент воздушный) можно регулировать. Напряжение пробоя корректируется при изменении формы либо расстояния между электродами. Как правило, показатель находится в пределах 2-20 кВ. Знак напряжения не должен слишком "закорачивать" конденсатор, на котором происходит постоянная смена знака.

Генерация

После того как будет достигнуто напряжение пробоя между электродами, в разряднике формируется электрический лавинообразный пробой газа. Происходит разряжение конденсатора на катушку. После этого резко снижается напряжение пробоя в связи с оставшимися ионами в газе (носителями заряда). Вследствие этого состоящая из конденсатора и первичной катушки цепь контура колебания через разрядник остается замкнутой. В ней образуются высокочастотные колебания. Они постепенно затухают, преимущественно вследствие потерь в разряднике, а также ухода на вторичную катушку электромагнитной энергии. Тем не менее колебания продолжаются, пока током создается достаточное количество зарядных носителей для поддержания в разряднике существенно меньшего напряжения пробоя, чем амплитуда колебаний LC-контура. Во появляется резонанс. Это приводит к возникновению высокого напряжения на терминале.

Модификации

Какого бы типа ни была схема трансформатора Тесла, вторичный и первичный контуры остаются неизменными. Тем не менее один из компонентов основного элемента может быть разной конструкции. В частности, речь идет о колебаний. Например, в модификации SGTC этот элемент выполняется на искровом промежутке.

RSG

Трансформатор Тесла высокой мощности включает в себя более сложную конструкцию разрядника. В частности, это касается модели RSG. Аббревиатура расшифровывается как Rotary Spark Gap. Ее можно перевести следующим образом: вращающийся/роторный искровой либо статический промежуток с дугогасительными (дополнительными) устройствами. В таком случае частота работы промежутка подбирается синхронно частоте конденсаторной подзарядки. Конструкция искрового роторного промежутка включает в себя двигатель (как правило, он электрический), диск (вращающийся) с электродами. Последние или замыкают, или приближаются к ответным компонентам для замыкания.

В некоторых случаях обычный разрядник заменяют многоступенчатым. Для охлаждения этот компонент иногда помещают в газообразные или жидкие диэлектрики (в масло, к примеру). В качестве типового приема гашения дуги статистического разрядника используется продувка электродов с помощью мощной воздушной струи. В ряде случаев трансформатор Тесла классической конструкции дополняется вторым разрядником. Задача этого элемента состоит в обеспечении защиты низковольтной (питающей) зоны от высоковольтных выбросов.

Ламповая катушка

В модификации VTTC используют электронные лампы. Они играют роль генератора колебаний ВЧ. Как правило, это достаточно мощные лампы типа ГУ-81. Но иногда можно встретить и маломощные конструкции. Одной из особенностей в данном случае является отсутствие необходимости обеспечения высокого напряжения. Чтобы получить относительно небольшие разряды, нужно порядка 300-600 В. Кроме того, VTTC почти не издает шума, который появляется, когда трансформатор Тесла функционирует на искровом промежутке. С развитием электроники появилась возможность значительно упростить и уменьшить размер прибора. Вместо конструкции на лампах стали применять трансформатор Тесла на транзисторах. Обычно используется биполярный элемент соответствующей мощности и тока.

Как сделать трансформатор Тесла?

Как выше было сказано, для упрощения конструкции используется биполярный элемент. Несомненно, намного лучше применить полевой транзистор. Но с биполярным проще работать тем, кто недостаточно опытен в сборке генераторов. Обмотка катушек связи и коллектора осуществляется проводом в 0.5-0.8 миллиметров. На высоковольтной детали провод берется 0.15-0.3 мм толщиной. Делается приблизительно 1000 витков. На "горячем" конце обмотки ставится спираль. Питание можно взять с трансформатора в 10 В, 1 А. При использовании питания от 24 В и более значительно увеличивается длина Для генератора можно использовать транзистор КТ805ИМ.

Применение прибора

На выходе можно получить напряжение в несколько миллионов вольт. Оно способно создавать в воздухе внушительные разряды. Последние, в свою очередь, могут обладать многометровой длиной. Эти явления очень привлекательны внешне для многих людей. Любителями трансформатор Тесла используется в декоративных целях.

Сам изобретатель применял аппарат для распространения и генерации колебаний, которые направлены на беспроводное управление приборами на расстоянии (радиоуправление), передачи данных и энергии. В начале ХХ столетия катушка Тесла стала использоваться в медицине. Больных обрабатывали высокочастотными слабыми токами. Они, протекая по тонкому поверхностному слою кожи, не вредили внутренним органам. При этом токи оказывали оздоравливающее и тонизирующее воздействие на организм. Кроме того, трансформатор используется при поджиге газоразрядных ламп и при поиске течей в вакуумных системах. Однако в наше время основным применением аппарата следует считать познавательно-эстетическое.

Эффекты

Они связаны с формированием разного рода газовых разрядов в процессе функционирования устройства. Многие люди коллекционируют трансформаторы Тесла, чтобы иметь возможность наблюдать за захватывающими эффектами. Всего аппарат производит разряды четырех видов. Зачастую можно наблюдать, как разряды не только отходят от катушки, но и направлены от заземленных предметов в ее сторону. На них также могут возникать коронные свечения. Примечательно, что некоторые химические соединения (ионные) при нанесении на терминал могут изменить цвет разряда. К примеру, натриевые ионы делают спарк оранжевым, а борные - зеленым.

Стримеры

Это тускло светящиеся разветвленные тонкие каналы. Они содержат ионизированные газовые атомы и свободные электроны, отщепленные от них. Эти разряды протекают от терминала катушки или от самых острых частей непосредственно в воздух. По своей сути стример можно считать видимой ионизацией воздуха (свечением ионов), которая создается ВВ-полем у трансформатора.

Дуговой разряд

Он образуется достаточно часто. К примеру, если у трансформатора достаточная мощность, при поднесении к терминалу заземленного предмета может образоваться дуга. В некоторых случаях требуется прикосновение предмета к выходу, а затем отведение на все большее расстояние и растягивание дуги. При недостаточной надежности и мощности катушки такой разряд может повредить компоненты.

Спарк

Этот искровой заряд отходит с острых частей или с терминала напрямую в землю (заземленный предмет). Спарк представлен в виде быстро сменяющихся или исчезающих ярких нитевидных полосок, разветвленных сильно и часто. Существует также особый тип искрового разряда. Он называется скользящим.

Коронный разряд

Это свечение ионов, содержащихся в воздухе. Оно происходит в высоконапряженном электрическом поле. В результате создается голубоватое, приятное для глаза свечение около ВВ-компонентов конструкции со значительной кривизной поверхности.

Особенности

В процессе функционирования трансформатора можно услышать характерный электрический треск. Это явление обусловлено процессом, в ходе которого стримеры превращаются в искровые каналы. Он сопровождается резким увеличением количества энергии и Происходит быстрое расширение каждого канала и скачкообразное повышение давления в них. В итоге на границах образуются ударные волны. Их совокупность от расширяющихся каналов формирует звук, который воспринимается как треск.

Воздействие на человека

Как и другой источник такого высокого напряжения, катушка Тесла может быть смертельно опасной. Но существует иное мнение, касающееся некоторых типов аппарата. Поскольку у высокочастотного высокого напряжения есть скин-эффект, а ток существенно отстает от напряжения по фазе и сила тока очень мала, несмотря на потенциал, разряд в человеческое тело не может спровоцировать ни остановку сердца, ни прочие серьезные нарушения в организме.

XIX век был этакой эпохой дикого Запада в экспериментальной физике электромагнетизма. Роберт Ван де Грааф, лорд Кельвин, Никола Тесла и многие другие учёные, исследователи и инженеры открывали всё новые и новые явления, а затем масштабировали производящие их установки до колоссальных размеров. Некоторые из их творений функционируют до сих пор - например, шестиметровый гигантский генератор Ван де Граафа в Бостонском музее науки , а некоторые, как широко известная башня Уорденклифф, так никогда и не появились на свет.

С течением времени и развитием науки и техники внимание учёных переключилось на другие направления, но отдельные энтузиасты продолжали собирать, изучать и совершенствовать классические разработки в области высоких напряжений, электростатики, физики плазмы - кто-то вследствие неугасающей веры в теорию эфира и бесплатную энергию, кто-то из любопытства, или для решения узкоспециальных прикладных задач, кто-то просто потому что ему это доставляло.

В последнее время, примерно с конца 90-х годов, эта отрасль инженерных задач переживает ренессанс, связанный с интересом шоу-бизнеса и индустрии развлечений к притягивающим внимание разрядам катушек Тесла , усилившийся в последнее десятилетие после изобретения DRSSTC , которая на настоящий момент представляет собой наиболее технически совершенный вид катушки Тесла, использующий вместо классического искрового разрядника силовые транзисторы, что позволяет быстро - в течение нескольких периодов колебаний - менять частоту появления разряда (BPS) и, как следствие, воспроизводить музыку непосредственно при помощи появляющихся молний. Один из примеров - известная серийная модель OneTesla, которая, при всей непродуманности предлагаемого авторами конструктора, вполне работоспособна при определённом приложении рук.

На настоящий момент трансформаторы Тесла и родственные им устройства (лестницы Иакова, генераторы Маркса и Кокрофта-Уолтона, плазменные колонны, генераторы Ван де Граафа и т. д.) разных размеров и зрелищности используются на постоянной основе в ряде организованных вокруг них шоу-проектов в США (Arc Attack), России (TeslaFX), Великобритании (Lords of Lightning), Китае (увы, иероглифам не обучен) и других странах, периодически светятся в шоу-бизнесе (спецэффекты в Гарри Поттере, Ученике Чародея, концерты Металлики и пр.), а также присутствуют в качестве экспоната в каждом уважающем себя музее науки.

Размер имеет значение

Короче говоря, в один момент группа инженеров-любителей, давно и прочно погрязших в коллективном тесластроении, решила, что играть в песочнице, делая небольшие комнатные (и даже среднеразмерные уличные) катушки, им уже скучно, и решила сделать что-то особенное. На тот момент у нас уже было (как нам казалось) достаточно опыта в разработке катушек Тесла различных топологий и имеющаяся математическая модель допускала масштабирование типовой конструкции в несколько раз. По факту, единственными явно заметными ограничениями были габариты доступного помещения, мощность розетки, и финансы (хотя, чего уж там, в итоге всё упирается в финансы). Прикинув бюджет, человекочасы и прочие скучные мелочи, было решено ограничиться габаритами установки примерно в три метра высоты, с расчётной мощностью около 30-40 кВт. Для разбирающихся в вопросе:

Итоговые технические характеристики

  • Технология: DRSSTC
  • Общая высота: 3.3 метра
  • Общая масса: ~130 кг
  • Питание: 3ф 380 В
  • Резонансная частота: ~50 кГц
  • Габариты вторичной обмотки: 310х1800 мм, провод 1.06 мм
  • Топология силовой части: полный мост, транзисторы CM600DU-24NFH
  • Пиковая потребляемая мощность: ~35 кВт
  • Пиковая мощность в контуре: ~2 МВт
  • Пиковый ток в контуре: 3800 А
  • Ёмкость первичного контура: 1.2 мкФ
  • Ёмкость электролитов инвертора: 18000 мкФ, 900 вольт
  • Максимальная зарегистрированная длина разряда: 6 метров

Технология, разумеется, была выбрана именно DRSSTC, поскольку при правильном подходе и отсутствии ошибок её стоимость (а также массогабариты) оказывается значительно ниже, чем у других вариантов (искровой разрядник или радиолампа) при тех же конечных параметрах. Ну и ещё, конечно же, на ней можно играть музыку.

Модульный принцип

При первичной проектировке достаточно крупной катушки Тесла проект можно разбить на несколько модулей (первичная обмотка, вторичная обмотка, тороид, корпус, силовой инвертор, драйвер, пульт управления, вспомогательная электрика и т. п.), каждый из которых придумывается и изготавливается в отдельности, после чего они собираются вместе, последовательно настраиваются и отлаживаются в процессе, и в итоге взрываются начинают испускать молнии. Обычно большинство трансформаторов Тесла собираются энтузиастами в одиночку от начала до конца, но у нас, во-первых, уже имелась более-менее слаженная команда с распределением функций (проект-менеджер, проектировщик, разработчик (он же тестировщик), и несколько человек на подхвате - монтажник, слесарь и так далее), а, во-вторых, сама по себе задача стояла довольно амбициозная, и хотелось сделать её без лишних расходов, но при этом более или менее качественно, насколько это возможно для прототипной и уникальной конструкции. Поэтому каждый мог заниматься своим делом, параллельно общаясь для синхронизации модулей между собой, а я, будучи этим самым проект-менеджером, могу рассказать про каждый из модулей по отдельности, а также показать, что получилось в итоге.

Подготовка и материалообработка

После обсуждения, осмысления и различного словоблудия по теме, общий концепт был утверждён коллективным решением и я изобразил примитивный эскиз в 3ds max. Эскиз был нужен для осознания масштабов задачи, понимания основных взаимных пропорций модулей, в качестве отправной точки для проектировки и для поднятия боевого духа команды. На основе эскиза проектировщик собрал проект в Creo Elements (тогда ещё Pro/Engineer), уже с соблюдением конкретных размеров, способов соединения деталей между собой и прочими нюансами. По результатам этого проекта были созданы чертежи: деталей корпуса, основания первичной обмотки, тороида, коробки для автоматики и электрики, а также блока конденсаторов первичного контура (MMC).

В качестве конструкционных материалов мы использовали стеклотекстолит толщиной 18 мм, обработанный методом гидроабразивной резки (ввиду его высокой конструкционной и термической устойчивости, другие методы обработки оказались нерентабельны), толстую фанеру для корпуса и алюминиево-пластиковый композит для блока автоматики (для экранировки от создаваемого катушкой мощного фронта электромагнитных помех, пагубно влияющего на её же собственные управляющие схемы), а также поликарбонат в ряде мест. Фанеру и пластик обрабатывали на ЧПУ фрезере, имевшемся во владении соседа по заводику, где наш коллектив занимался всем этим непотребством. Creo Elements позволяет создавать сразу готовые управляющие программы для ЧПУ, что очень сильно помогло в процессе - мы просто, по факту, арендовали станок и делали на нём что надо когда надо.

Первичка и вторичка

Вторичную обмотку намотали на классическом каркасе - большой оранжевой канализационной трубе из ПВХ (серьёзно, это лучший из имеющихся вариантов для катушек Тесла любых габаритов по соотношению цены, доступности и соответствия задаче). Намотанный виток к витку эмалированный провод (диаметр 1.06 мм) в один слой, покрытый затем эпоксидной смолой, превратил трубу в огромного размера индуктор, с нетерпением ожидающий своей минуты славы - вторичку гигантской катушки Тесла. Итоговые габариты трубы получились 310х1800 мм.

Первичную обмотку - тоже классика - мы намотали медной трубкой для кондиционеров, диаметром 22 мм (7/8 дюйма). Витки аккуратно ложились в пазы, вырезанные в стеклотекстолите струёй воды с абразивом под давлением в тысячи атмосфер, и вот уже два модуля, первичка и вторичка - скелет любой катушки Тесла - соединились друг с другом. Проект понемногу обретал форму и цвет.

Тороид

С тороидом, необходимым элементом любой мощной катушки Тесла, однако, всё оказалось сложнее. Изначально предполагалось также последовать проверенной дорогой и использовать алюминиевую гофру для вентиляции. На практике же обнаружилось, что это чрезвычайно одноразовое решение - гофра мгновенно мнётся от любых неосторожных движений, и при планируемых габаритах её придётся заменять при каждой транспортировке устройства.

Поэтому, после некоторого исследования вопроса, я украл идею наткнулся на один любопытный вариант в Сети, а проектировщик смоделировал его с учётом наших масштабов и выдал проект для сборки. Дело в том, что основное требование к тороиду катушки Тесла - это его «гладкость» с точки зрения электромагнитных полей, поскольку любые заострения или неровности представляют собой точки формирования коронного разряда, который вызывает пробой воздуха раньше, чем достигается максимальная мощность, а, кроме того, забирают на себя часть полезной длины молнии. Но здесь есть один нюанс, связанный с тем, что силовые линии поля как бы обтягивают тороид эквипотенциальными зонами, вследствие чего его можно собрать из составных частей, которые, будучи сложены вместе правильным образом, образуют при работе катушки Тесла поле достаточно гладкое, чтобы предотвратить появление разряда там, где не надо.

В общем, результат оказался очень необычным внешне, относительно простым в производстве, надёжным в эксплуатации и на удивление эффективным в сравнении с другими известными вариантами исполнения этой важной части катушки Тесла. Диаметр алюминиевой трубы - 50 мм, а общий размер всей получившейся штуки, напоминающей НЛО - около двух метров в диаметре. Круги-проставки для трубок вырезали из фанеры всё на том же ЧПУ-фрезере, а центральную раму я сварил из стального уголка.

На этом, в принципе, конструкционная часть была закончена.

Силовая часть

В силовом инверторе для больших катушек Тесла часто используются IGBT-модули - этакие чёрные (или белые) кирпичики с двумя-тремя (иногда до 10) силовыми клеммами и несколькими выводами для управления, штатно используемые в силовых инверторах - мощные блоки зарядки, трансформаторные подстанции, частотные преобразователи для двигателей, электротранспорт и т. п. Вследствие большого размера кристалла, эти модули оказываются способны выдержать значительную кратковременную перегрузку по рабочему току (до 10 раз от номинального), что чрезвычайно выгодно в импульсном инверторе катушки Тесла по DRSSTC-технологии, поскольку рабочий цикл (время, в течение которого происходят колебания в контурах и через транзисторы течёт ток, разогревающий их кристаллы), в нём обычно составляет около 5-10%. Но, с другой стороны, абсолютное большинство этих IGBT-модулей рассчитаны на рабочие частоты порядка единиц, реже десятков килогерц (впрочем, в последнее время ситуация улучшается и современные модули могут работать до 100 кГц). Использование их на большей частоте часто ведёт к проблемам с управлением затворами, перегреву и взрывам (куда ж без взрывов).

Стоимость одного модуля, даже б/у, может быть сравнительно велика (от единиц до сотен тысяч рублей), так что мы решили перестраховаться и поставить с запасом по импульсному току два модуля CM600DU-24NFH (600 ампер непрерывного тока, 1200 вольт, два транзистора в полумостовом включении) по схеме «полный мост» (как известно, полный мост делается из двух полумостов - К. О.), или просто «мост». Посаженные на соответствующий их габаритам радиатор через пару чайных ложек термопасты КПТ-8, они были соединены медными шинами и снабжены необходимым обвесом - силовыми электролитическими и плёночными конденсаторами.

В придумывании актуального способа соединения этих деталей между собой есть масса хитрых эмпирических ноу-хау, призванных сократить риски и максимизировать надёжность подобных конструкций, но поля этой записи слишком узки, чтобы я мог рассказать про них, если вы понимаете о чём я. Не было никаких гарантий, что получившаяся штука не взорвётся при первой же попытке её включить, но на тот момент это казалось приемлемым риском.

Автоматика и электрика

Управляющая электрика не содержала в себе ничего особенно интересного. Нужно было обеспечить плавную зарядку электролитов (чтобы они не выбивали автоматы в щитке в момент включения установки) - с этим справились автоматический пускатель (по сути, большое силовое реле) и несколько силовых резисторов.

Диодный мост на 150 ампер выпрямлял сеть (кстати, вся конструкция создавалась, конечно же, под трёхфазное питание, с чем была связана масса разных интересных открытий - раньше мы не делали ничего под три фазы, тем более такой мощности), вентиляторы обдували диодный мост и заодно радиатор силовой части, а лампочки на передней панели изображали светофор, любезно сообщая, когда можно трогать части катушки руками, когда лучше не стоит, и когда желательно оказаться от неё на максимально возможном расстоянии, чтобы не словить разряд в макушку.

Поскольку продавался пульт в виде распаянной и прошитой платы с россыпью выносных деталек, нам пришлось разработать к ней корпус, куда встали бы сама плата, питание, четыре энкодера, четыре кнопки, дисплей и многочисленные разъёмы (четыре оптопередатчика, MIDI вход, USB вход, слот для SD карты). По ходу дела обнаружилась масса разного рода недоработок автора, в частности, отсутствие какого-либо контроля питания (питать от «Кроны»? Литий-ион? не, не слышал), что пришлось исправлять и доделывать, чтобы этим можно было пользоваться по назначению. Получившаяся в итоге химера, несмотря на ряд отвратительных глюков при некоторых неудачных условиях, успешно справляется с основной задачей и по сей день. Фотографии его у меня как-то не нашлось, но его можно заметить на одном из кадров ниже, в параграфе «первичная проверка» - чёрная коробочка рядом с силовым кабелем в правой части снимка. Ещё есть кадр из видео от автора схемы и прошивки - вот он.

Конденсаторная батарея

В качестве резонансного конденсатора мы выбрали силовые плёночные конденсаторы одного из отечественных производителей, специально разрабатывавшиеся (если верить каталогу производителя) для импульсных режимов работы. Пять штук общей ёмкостью около 1.2 мкф, и максимальным напряжением 20 киловольт, соединённые медной шиной с латунными винтами. Латунного крепежа, кстати, на весь проект ушло значительное количество - из-за огромных токов в килоамперы, в сочетании с мощным магнитным полем от первичной обмотки, и стальной оцинкованный и нержавеющий крепёж моментально разогреваются докрасна, что может в итоге приводить к незапланированным спецэффектам (да-да, взрывам). Поэтому и в ошиновке конденсаторов, и вообще во всех силовых соединениях в первичном контуре пришлось использовать только медь и латунь. Первые же тесты показали наивность попыток поставить туда что-то ферромагнитное и/или недостаточно хорошо пропускающее электрический ток.

Первичная проверка

Следующим этапом была настройка драйвера. Для этого достаточно собрать в одно целое первичный контур (конденсаторную батарею, первичку и мост), подключить к транзисторам моста драйвер и плавно начать подавать напряжение, отслеживая на осциллографе формы сигналов в различных участках схемы. Если всё сделано правильно, то в первичном контуре возникает автогенерация на расчётной частоте (в нашем случае около 50 кГц). Вторичка при этом не нужна, и никаких разрядов не возникает, но собираемых данных достаточно, чтобы настроить предиктор, OCD и заметить ошибки в монтаже или выбранных параметрах деталей. Эта часть оказалась простой и лёгкой (кстати, в таком режиме первичная обмотка вполне может работать как индукционная плита для приготовления пищи - есть прецеденты жарки яичницы на сковороде, стоящей поверх первички), и мы отправились вместе с почти родившимся детищем в один большой и полузаброшенный цех заводика, чтобы проверить наконец наше творение in vivo.

Проверка оказалась быстрой, яркой и немного предсказуемой: выдав несколько четырёхметровых разрядов, катушка Тесла сказала «вы мне надоели, я ухожу» и прекратила работать с громким хлопком где-то внутри корпуса. Последующее исследование этого феномена показало, что в процессе подбора оптимальной частоты мы ошиблись на один виток первичной обмотки, и возникшего рассогласования при переключении транзисторов оказалось достаточно, чтобы они, как это говорят на профессиональном тесластроительном арго, насиланили, то есть пришли в полную негодность ввиду перехода содержащегося в них кремния в газообразное состояние (как в том анекдоте, что транзисторы работают, мол, на волшебном дыме - когда он выходит, они работать перестают). Запасной комплект транзисторов остался в лаборатории, и остаток отведённого времени мы вяло переругивались друг с другом и запускали другие взятые с собой катушки Тесла в рамках репетиции к фестивалю GEEK PICNIC (под который был приурочен релиз проекта).

Никола Тесла – известный физик, который всю свою жизнь занимался электричеством. Он разработал множество установок и устройств, которые названы его именем. Одно из них – это генератор Тесла, в основе которого лежит эффект вылетающих стримеров, что очень красиво. Поэтому уважающий себя радиолюбитель обязательно должен один раз собрать этот прибор. Тем более это несложно. Итак, как собрать генератор Тесла своими руками (схема прибора и последовательность его сборки)?

Чтобы упростить поставленную задачу, надо разбить весь процесс на три этапа:

  1. Сборка вторичной обмотки, она высоковольтная.
  2. Сборка первичной обмотки (низковольтной).
  3. Сборка схемы управления.

Первый этап

В основе вторичной обмотки лежит цилиндр, вокруг которого и будет наматываться медный провод. Здесь важно, чтобы цилиндр был изготовлен из диэлектрического материала. Поэтому оптимальный вариант (он же самый простой) – это ПВХ труба. Если говорить о размерах, то 50 мм в диаметре и 30 см длиною – это то, что вам необходимо.

Теперь, что касается медного провода. Во-первых, его диаметр. Для нашего устройства подойдет провод диаметром 0,12 мм. Во-вторых, количество витков в обмотке. Рассчитать этот показатель точно практически невозможно, поэтому многие радиолюбители идут опытным путем. Но специалисты отмечают, что меньше 800 витков делать обмотку нельзя. Это связано с коэффициентом полезного действия прибора. Ниже 800 витков КПД резко снижается. В нашем случае берем количество витков – 1600.

Теперь третий показатель – это высота или длина намотки (все зависит от того, как расположить пластиковую трубу: вертикально или горизонтально). Здесь можно просто подсчитать, для этого количество витков умножается на диаметр провода. В нашем случае это будет выглядеть вот так:

1600х0,12=192 мм или 19 см.

После этого можно непосредственно переходить к сборке вторичной обмотки генератора Тесла. Процесс этот трудоемкий, требующий аккуратности и внимательности, так что пару дней вам придется на это затратить.

В первую очередь тонким сверлом в трубе делается отверстие. От него вдоль трубы отмеряется расстояние 19 см, где делается заметка, на которой делается еще одно отверстие сверлом. Теперь в первое отверстие вставляется медный провод, который изнутри трубы чем-нибудь закрепляется. К примеру, скотчем. Обратите внимание, что внутрь ПВХ трубы надо вставить приличный конец провода длиною не меньше 10 см.

Все готово, можно начинать наматывать провод на трубу снизу-вверх. Намотка должна производиться по часовой стрелке, витки должны ложиться аккуратно, плотно прижимаясь друг к другу. Никаких скруток и волн, все четко и ровно. Если вы устали или появились неотложные дела, то последний виток закрепить изолентой, чтобы он не сместился, и не сместились все остальные витки.

Как уже было сказано выше, весь процесс требует внимания и аккуратности. По сути, это 60% всей работы по сборке генераторной установки Тесла. Итак, последний виток уложен, теперь надо откусить провод с запасом в 10 см и вставить его конец во второе отверстие, где изнутри трубы закрепить скотчем.

Но это еще не все. Чтобы обмотка смогла выдержать механические нагрузки, чтобы между витками трансформатора не произошло пробоя, необходимо собранный прибор покрыть защитным изоляционным материалом. Кто-то для этих целей использует эпоксидную смолу, кто-то обычный паркетный лак и другие материалы. Здесь важно равномерно нанести защитное покрытие в несколько слоев (5-6). При этом последующий слой наносится на предыдущий только после полного его высыхания. Лучше всего защиту наносить губкой.

Второй этап

Переходим к изготовлению первичной обмотки генераторной установки Тесла. Для этого вам понадобится толстый изолированный провод из алюминия или из меди. Кстати, чем больше диаметр выбранного вами провода, тем лучше. Хотя есть определенные ограничения, поэтому провод сечением 10 мм² будет нормально.

Внимание! Диаметр первичной обмотки должен быть больше диаметра вторичной обмотки в два раза. Если у нас для вторичной обмотки генератора использовалась труба диаметром 50 мм, то для первичной потребуется 100 мм. В принципе, для этих целей можно использовать даже кастрюлю, потому что обмотка нам нужна будет в чистом виде без основы.

Что касается количества витков, то 5-6 штук будет в самый раз. А вот концы обмотки надо вывести вертикально вверх в одну сторону, при этом надо сделать так, чтобы оба конца находились на одном уровне. В принципе, все, первичная обмотка генератора Тесла своими руками (схема несложная) сделана.

Третий этап

Что можно сказать о схеме управления генератором Тесла. Существует множество вариантов: простых и сложных. Есть схемы, с помощью которых регулировку трансформатора надо проводить вручную, есть с автоматической настройкой. Любые схемы вы можете найти в свободном доступе в интернете, так что это не проблема.

В нашем случае была применена вот эта схема:

Разобраться в ней несложно, здесь были применены простые детали, которые наверняка есть у каждого радиолюбителя в наличии. Использовать можно новые и использованные элементы. Собирать блок управления можно на текстолитовой пластине размерами 20х20 см. Для защиты схемы можно сверху установить еще одну пластину, на которую, в свою очередь, монтируются обе обмотки.

Обратите внимание еще раз на схему управления генератором Тесла. Включать тумблеры SA2 и SA3 надо только после того, как генератор будет запущен и в верхней части катушки появится коронарный разряд. После этого можно включать оба тумблера, что приведет к увеличению мощности разряда. Если включение прибора провести с включенными тумблерами, то произойдет резкий бросок тока в цепь транзисторов. А этого лучше избегать.


Знаменитый изобретатель Никола Тесла имеет немало заслуг перед наукой и техникой, но только одно изобретение носит его имя. Это резонансный трансформатор, известный также как« катушка Теслы».

Трансформатор Теслы состоит из первичной и вторичной обмоток, схемы, обеспечивающей питание первичной обмотки на резонансной частоте вторичной, и, опционально, дополнительной емкости на высоковольтном выходе вторичной обмотки. Острие, укрепленное на дополнительной емкости, повышает напряженность электрического поля, облегчая пробой воздуха. Дополнительная емкость снижает рабочую частоту, уменьшая нагрузку на транзисторы, и, по некоторым данным, повышает длину разрядов. В качестве каркаса вторичной обмотки используется кусок канализационной ПВХ-трубы. Вторичная обмотка состоит примерно из 810 витков эмалированного провода диаметром 0,45 мм. Первичная обмотка состоит из восьми витков провода сечением 6 мм2. Схема питания основана на принципе автоколебаний и построена на силовых транзисторах.

Игорь Егоров

Суть изобретения Теслы проста. Если питать трансформатор током с частотой, равной резонансной для его вторичной обмотки, напряжение на выходе возрастает в десятки и даже сотни раз. Фактически оно ограничено электрической прочностью окружающего воздуха (или иной среды) и самого трансформатора, а также потерями на излучение радиоволн. Наиболее известна катушка в области шоу-бизнеса: она способна метать молнии!

Форма и содержание

Трансформатор выглядит весьма необычно — он словно специально сконструирован для шоу-бизнеса. Вместо привычного массивного железного сердечника с толстыми обмотками — длинная полая труба из диэлектрика, на которую провод намотан всего в один слой. Такой странный вид вызван необходимостью обеспечить максимальную электрическую прочность конструкции.

Кроме необычного внешнего вида, трансформатор Теслы имеет еще одну особенность: в нем обязательно есть некая система, создающая в первичной обмотке ток именно на резонансной частоте вторичной. Сам Тесла использовал так называемую искровую схему (SGTC, Spark Gap Tesla Coil). Ее принцип заключается в зарядке конденсатора от источника питания с последующим подключением его к первичной обмотке. Вместе они создают колебательный контур.

Емкость конденсатора и индуктивность обмотки подбираются так, чтобы частота колебаний в этом контуре совпадала с необходимой. Коммутация осуществляется с помощью искрового промежутка: как только напряжение на конденсаторе достигает определенного значения, в промежутке возникает искра, замыкающая контур. Часто можно увидеть утверждения, что «искра содержит полный спектр частот, так что там всегда есть и резонансная, за счет чего и работает трансформатор». Но это не так — без правильного подбора емкости и индуктивности действительно высокого напряжения на выходе не получить.

Решив сделать свой трансформатор Теслы, мы остановились на более прогрессивной схеме — транзисторной. Транзисторные генераторы потенциально позволяют получить любую форму и частоту сигнала в первичной обмотке.

Выбранная нами схема состоит из микросхемы драйвера силовых транзисторов, маленького трансформатора для развязки этого драйвера от питающего напряжения 220 В и полумоста из двух силовых транзисторов и двух пленочных конденсаторов. Трансформатор мотается на кольце из феррита с рабочей частотой не менее 500 кГц, на нем делается три обмотки по 10−15 витков провода. Очень важно подключить транзисторы к обмоткам трансформатора так, чтобы они работали в противофазе: когда один открыт, другой закрыт.

Нужная частота возникает за счет обратной связи со вторичной обмоткой (схема основана на автоколебаниях). Обратная связь может осуществляться двумя способами: с помощью или трансформатора тока из 50−80 витков провода на таком же ферритовом кольце, как и разделительный трансформатор, через которое проходит провод заземления нижней части вторичной обмотки, или… просто кусочка проволоки, которая выполняет роль антенны, улавливающей испускаемые вторичной обмоткой радиоволны.

Мотаем на ус

В качестве каркаса первичной обмотки мы взяли канализационную трубу из ПВХ диаметром 9 см и длиной 50 см. Для намотки используем эмалированный медный провод диаметром 0,45 мм. Каркас и катушку обмоточного провода размещаем на двух параллельных осях. В качестве оси каркаса выступал кусок ПВХ-трубы меньшего диаметра, а роль оси катушки с проводом выполнила завалявшаяся в редакции стрела от лука.

Существуют три варианта первичной обмотки: плоская спираль, короткая винтовая и коническая обмотка. Первая обеспечивает максимальную электрическую прочность, но в ущерб силе индуктивной связи. Вторая, напротив, создает наилучшую связь, но чем она выше — тем больше шансов, что произойдет пробой между нею и вторичной обмоткой. Коническая обмотка — промежуточный вариант, позволяющий получить наилучший баланс между индуктивной связью и электрической прочностью. Рекордные напряжения мы получить не рассчитывали, так что выбор пал на винтовую обмотку: она позволяет добиться максимального КПД и проста в изготовлении.

В качестве проводника взяли провод питания аудиоаппаратуры с сечением 6 мм², восемь витков которого намотали на отрезок ПВХ-трубы большего диаметра, чем у каркаса вторичной обмотки, и закрепили обычной изолентой. Такой вариант нельзя считать идеальным, ведь ток высокой частоты течет лишь по поверхности проводников (скин-эффект), так что правильнее делать первичную обмотку из медной трубы. Но наш способ прост в изготовлении и при не слишком больших мощностях вполне работает.

Управление

Для обратной связи мы изначально планировали использовать трансформатор тока. Но он оказался неэффективным при малых мощностях катушки. А в случае антенны сложнее обеспечить первоначальный импульс, который запустит колебания (в случае трансформатора через его кольцо можно пропустить еще один провод, на который на долю секунды замыкать обычную батарейку). В итоге у нас получилась смешанная система: один выход трансформатора был подключен к входу микросхемы, а провод второго не был ни к чему подключен и служил антенной.

Короткие замыкания, пробитие транзисторов и прочие неприятности изначально предполагались очень даже возможными, так что дополнительно был изготовлен пульт управления с амперметром переменного тока на 10 А, автоматическим предохранителем на 10 А и парой «неонок»: одна показывает, есть ли напряжение на входе в пульт, а другая — идет ли ток к катушке. Такой пульт позволяет удобно включать и выключать катушку, отслеживать основные параметры, а также дает возможность многократно снизить частоту походов к щитку для включения «выбитых» автоматов.

Последняя опциональная деталь трансформатора — дополнительная емкость в виде проводящего шара или тора на высоковольтном выходе вторичной обмотки. Во многих статьях можно прочесть, что она способна существенно удлинить разряд (кстати, это широкое поле для экспериментов). Мы сделали такую емкость на 7 пФ, собрав вместе две стальные чашки-полусферы (из магазина IKEA).

Сборка

Когда все компоненты изготовлены, конечная сборка трансформатора не составляет никакой проблемы. Единственная тонкость — заземление нижнего конца вторичной обмотки. Увы, не во всех отечественных домах есть розетки с отдельными контактами земли. А там, где есть, эти контакты не всегда реально подключены (проверить это можно с помощью мультиметра: между контактом и проводом фазы должно быть около 220 В, а между ним и нулевым проводом — почти нуль).

Если у вас такие розетки есть (у нас в редакции нашлись), то заземлять нужно именно с их помощью, используя для подключения катушки соответствующую вилку. Часто советуют заземлять на батарею центрального отопления, но это категорически не рекомендуется, поскольку в некоторых случаях может привести к тому, что батареи в доме будут бить током ни о чем не подозревающих соседей.

Но вот наступает ответственный момент включения… И сразу же появляется первая жертва молнии — транзистор схемы питания. После замены выясняется, что схема в принципе вполне работоспособна, хотя и на небольших мощностях (200−500 Вт). При выходе на проектную мощность (порядка 1−2 кВт) транзисторы взрываются с эффектной вспышкой. И хотя эти взрывы не представляют опасности, режим «секунда работы — 15 минут замены транзистора» не является удовлетворительным. Тем не менее с помощью этого трансформатора вполне можно почувствовать себя в роли Зевса-громовержца.

Благородные цели

Хотя в наше время трансформатор Теслы, по крайней мере в его исходном виде, чаще всего находит применение в разнообразных шоу, сам Никола Тесла создавал его для куда более важных целей. Трансформатор является мощным источником радиоволн с частотой от сотни килогерц до нескольких мегагерц. На основе мощных трансформаторов Теслы планировалось создание системы радиовещания, беспроводного телеграфа и беспроводной телефонии.

Но наиболее грандиозный проект Теслы, связанный с использованием его трансформатора, — создание глобальной системы беспроводного энергоснабжения. Как он считал, достаточно мощный трансформатор или система трансформаторов сможет в глобальном масштабе менять заряд Земли и верхних слоев атмосферы.

В такой ситуации установленный в любой точке планеты трансформатор, имеющий такую же резонансную частоту, как и передающий, будет источником тока, и линии электропередач станут не нужны.

Именно стремление создать систему беспроводной передачи энергии погубило знаменитый проект Wardenclyff. Инвесторы были заинтересованы в появлении только окупаемой системы связи. А передатчик энергии, которую мог бы неконтролируемо принимать любой желающий по всему миру, напротив, грозил убытками электрическим компаниям и производителям проводов. А один из основных инвесторов был акционером Ниагарской ГЭС и заводов по производству меди…

Похожие публикации