Стекло классификация основные понятия и свойства. Классификация изделий из стекла

Каждый конкретный тип стекла должен выполнять вполне определенную функцию. Можно выделить пять основных функций стекла: теплоизоляция зимой; защита от перегрева помещений летом; звукоизоляция; обеспечение безопасности, эстетическая.
Для реализации этих функций разработаны различные типы стекол, рассмотрим их подробнее.

Энергосберегающие стекла
Теплоизоляция в зимний период является наиболее важной функцией стекол для большинства регионов России. Как уже говорилось выше, потери тепла через стекло складываются из теплопроводности, конвекции и теплового излучения. Для уменьшения потерь тепла от теплопроводности и конвекции применяют двойное остекление (стеклопакеты, см. ниже), но это дает лишь незначительный эффект, т.к. основные теплопотери происходят за счет теплового излучения. Для борьбы с этим разработаны так называемые энергосберегающие стекла.

Придание энергосберегающих свойств стеклу связано с нанесением на его поверхность низкоэмиссионных оптических покрытий, а само стекло с таким покрытием получило название низкоэмиссионного. Эти покрытия обеспечивают прохождение в помещение коротковолнового солнечного излучения, но препятствуют выходу из помещения длинноволнового теплового излучения, например от отопительного прибора (поэтому стекла с низкоэмиссионными покрытиями также называют селективными стеклами).

Характеристикой энергосбережения является излучательная способность стекла. Под излучательной способностью стекла (эмиссией) понимают способность стеклянной поверхности отражать длинноволновое, не видимое человеческим глазом тепловое излучение, длина волны которого меньше 16000 Нм. Эмисситент поверхности (Е) определяет излучательную способность стекла (у обычного стекла Е составляет "0.83, а у селективных меньше 0,04) и, следовательно, возможность как бы "отражать" обратно в помещение тепловое излучение.

Причина возникновения излучения кроется в движении свободных электронов атомов, находящихся на поверхности стекла, и плотности движущихся электронов. Далеко не все металлы, хорошо проводящие электрический ток, обладают свойством отражать длинноволновое тепловое излучение.

Следовательно, чем ниже эмисситент, тем меньше потери тепла. При этом стекло с оптическим покрытием, имеющим значение эмисситента Е= 0,004, отражает обратно в помещение свыше 90% тепловой энергии, уходящей через окно.

В настоящее время для этих целей используется два типа покрытий: так называемое К-стекло (Low-E) - "твердое" покрытие - и i-стекло (Double Low-E) - "мягкое" покрытие.

Первым шагом в выпуске энергосберегающего стекла явилось производство К-стекла. Для придания флоат-стеклу теплосберегающих свойств непосредственно при изготовлении на его поверхности методом химической реакции при высокой температуре (метод пиролиза) создается тонкий слой из окислов металлов InSnO2, который является прозрачным и в то же время обладает электропроводностью. Известно, что электропроводность напрямую связана с излучательной способностью Е- поверхности. Величина излучательной способности простого стекла составляет 0,84, а К-стекла обычно около 0,2.

Следующим значительным шагом в производстве теплосберегающих стекол стал выпуск т.н. i-стекла, которое по своим теплосберегающим свойствам в 1,5 раза превосходит К-стекло. Различие между К-стеклом и i-стеклом заключается в коэффициенте излучательной способности, а также технологии его получения.

I-стекло производится вакуумным напылением и представляет собой тройственную (или более) структуру из чередующихся слоев серебра диэлектрика (BiO, AlN, TiO2 и т.п.). Технология нанесения требует использования высоковакуумного оборудования с системой магнетронного распыления.

Основным недостатком i-стекол является их пониженная, по сравнению с К-стеклом, абразивная стойкость, что представляет некоторое неудобство при их транспортировке, но, учитывая, что такое покрытие находится внутри стеклопакета, это не сказывается на его эксплуатационных свойствах.

Необходимо также обратить внимание, что при работе с К-стеклом и i-стеклом требуется зачистка (т.е. снятие) покрытия в месте контакта дистанционной рамки (см. ниже раздел "Стеклопакеты") и стекла. Это необходимо для предотвращения коррозии покрытия вдоль поверхности в процессе эксплуатации, а также для увеличения адгезии бутила к стеклу.

Основная область применения стекол - использование их в составе стеклопакетов, теплосберегающие свойства которых во многом определяются параметрами покрытия на стекле.

Солнцезащитные стекла
Под солнцезащитным стеклом понимается стекло, которое обладает способностью снижать пропускание световой и/или солнечной тепловой энергии. Солнцезащитными являются, например, окрашенные по всей массе стекла, а также некоторые виды стекол с покрытиями.

Окрашенное в массе стекло изготавливается путем добавления оксидов металлов в расплавленное стекло. Эти оксиды определяют не только конечный цвет продукта (бронзовый, серый, зеленый или синий), но и определяют его световые и энергетические свойства.
Тонированные стекла частично поглощают тепловые лучи, оставаясь достаточно прозрачными для видимого света. Снижение проникновения солнечного тепла связано с тем, что часть тепла, которое попадает на стекло, поглощается самим стеклом.

Поглощенное тепло в дальнейшем выделяется в ту сторону, температура воздуха которой ниже. Количество тепла, которое проникает через стекла, зависит от его цвета и толщины.

По механизму действия солнцезащитные стекла можно разделить на 2 группы: преимущественно отражающие излучение и преимущественно поглощающие излучение.

Солнцеотражающие стекла первой группы представляют собой листы бесцветного или окрашенного стекла, одна сторона которых покрыта тонким прозрачным слоем оксидов металлов (наносимым в процессе производства), который препятствует проникновению излучения через стекло. Следует отметить, что отражающие слои одновременно поглощают какую-то часть излучения. Устанавливать подобные стекла можно как покрытием во внутрь помещения, так и наружу. Расположение покрытия очень важно, т.к. именно это определяет и оттенок стекла, и его технические характеристики.

При изготовлении поглощающих стекол на расплавленную стекольную массу наносятся либо кристаллы металлов, либо окислы металлов, которые обладают способностью поглощать часть солнечного излучения. Параллельно с этим стекла нагреваются и отдают большую часть полученного ими тепла в наружное пространство. Часть тепла, однако, передается внутрь помещения, что является, конечно, нежелательным явлением, поскольку увеличивает потребность в энергии для охлаждение помещения.

Конструкции, сочетающие в себе отражающие покрытия и покрытия с низкой излучательной способностью, являются новым изделием, появившимся в продаже.

Полностью отражающие поверхности прозрачных стекол получают путем последовательного нанесения нескольких слоев покрытия на поверхность стекла. Как правило, количество покрывающих слоев равняется пяти, из которых четыре являются слоями окислов металлов, а пятый работающий слой состоит из серебра. Серебро обладает способностью пропускать видимый свет так же, как и обычное стекло. В случае, когда длина волны больше 0,76 мкм, серебро почти полностью отражает все излучение. Кроме того, такие стекла обладают и хорошей теплоизолирующей способностью.

Ламинированное стекло
Ламинированное стекло (триплекс) - это архитектурное стекло, состоящее из двух или более стекол, ламинированных вместе с помощью ламинирующей пленки или специальной ламинирующей жидкости.

Ламинирование не увеличивает механическую прочность стекла, однако при разрушении ламинированное стекло не рассыпается благодаря ламинированной пленке, т.е. осколки остаются прикрепленными к ней. Ламинированное стекло обеспечивает также лучшую звукоизоляцию помещений, т.к. многослойное стекло способно эффективно снижать воздействие нежелательных шумов.
Разными видами ламинирующих пленок можно обеспечить практически любое тонирование стекла. Ламинированные стекла применяются при остеклении фасадов, балконов, окон.

Армированные стекла
Армированное стекло - листовое стекло с металлической сеткой, безопасное и пожаростойкое, служащее эффективной преградой от дыма и горячих газов. При пожаре оно может треснуть, однако арматура удерживает его на месте, предотвращая тем самым распространение огня. Осколки стекла не выпадают даже при образовании нескольких разломов, удерживаемые арматурой. Армированное стекло может быть применено при остеклении заводских цехов, окон, фонарей, шахт лифтов и фасадов.

Закаленные стекла
Закаленное стекло - это стекло, у которого путем химической или термической обработки повышается прочность к ударам и перепадам температуры, по сравнению с обычным стеклом. При разрушении закаленное стекло распадается на маленькие безопасные осколки. Следует обратить внимание на тот факт, что закаленное стекло не подлежит механической обработке, поэтому и выполняться она должна до процесса закаливания.

Закаливанию можно подвергать практически все виды стекла, за исключением армированного и некоторых видов декоративного стекла. Закаленные стекла могут применяться при производстве стеклопакетов или ламинированных стекол.

Для фасадов используется также закаленное стекло, на которое нанесена особая краска типа керамической фриты. Обработанный таким образом лист используется в качестве непрозрачной закрывающей панели для фасадных парапетов, причем его можно вставить в стеклопакет или использовать самостоятельно. Ряд фирм предлагает также услуги по нанесению на стекло различных узоров по методу шелкографии (под заказ).

Защитные стекла
Классификация защитных стекол и требования к ним содержатся в ГОСТ Р 51136.
Стекло защитное многослойное - это склеенные полимерными материалами в различном сочетании пластины силикатного стекла с органическим стеклом, поликарбонатом или упрочняющими пленками. Стекло представляет собой многослойный блок, обладающий защитными свойствами.

Ударостойкое стекло - это защитное стекло, выдерживающее многократный удар свободно падающего тела с нормируемыми показателями.

Устойчивое к пробиванию стекло - это защитное стекло, выдерживающее определенное количество ударов обухом и лезвием топора, наносимых с нормируемыми показателями.

Пулестойкое стекло - защитное стекло, выдерживающее воздействие огнестрельного оружия и препятствующее сквозному проникновению поражающего элемента.

ЗАЩИТНЫЕ СТЕКЛА (ГОСТ Р 51136)

Ударостойкое стекло

Ударостойкое стекло, в зависимости от его характеристик, подразделяют на классы защиты А1, А2 или А3.

Классификация ударостойкого стекла

Ударостойкое стекло, в зависимости от температуры применения, может быть двух видов:

  • используемое при температуре выше 0 °С;
  • используемое при температуре ниже 0 °С и прошедшее испытания на морозостойкость.


Устойчивое к пробиванию стекло

Устойчивое к пробиванию стекло подразделяют на классы защиты Б1, Б2 и Б3.

Классификация стекла, устойчивого к пробиванию

Класс защиты стекла Удары бойком молотка, обухом топора Удары лезвием топора Суммарное число ударов
Энергия удара, Дж 15 Встречная скорость удара, м/с 0,3
Энергия удара, Дж 15
Б1 12,5 350 11,0 300 От 30 до 50
Б2 12,5 350 11,0 300 От 51 до 70
Б3 12,5 350 11,0 300 Св. 71

Пулестойкое стекло

Пулестойкое стекло, в зависимости от его стойкости при обстреле из определенного вида оружия, определенными боеприпасами, подразделяют на классы защиты В1, В2, В3, В4 и т.д.

Пулестойкое стекло может быть двух видов: безосколочное и осколочное.

Безосколочное, то есть при воздействии огнестрельного оружия на тыльной стороне стекла не образуются осколки или образовавшиеся осколки не опасны для здоровья человека, находящегося в непосредственной близости от защитного стекла.
Осколочное, то есть при воздействии оружия на тыльной стороне стекла образуются осколки.

Классификация стекла в зависимости от средства поражения и характеристики поражающего элемента (пули)

Класс защиты Средство поражения Наименование ииндекс патрона Характеристика пули Дистанция обстрела, м
Тип сердеч- ника Масса, г Скорость, м/с 10 Калибр, мм
В1 Пистолет Макарова (ПМ) Патрон 57-Н-181 Стальной 5,9 315 9 5
В2 Пистолет Токарева (ТТ) Патроны 57-Н-132С, 57-Н-134С То же 5,5 420 7,62 5
В3а Автомат АК-74 Патрон с пулей 7Н6 Стальной нетермо-упрочненный 3,4 880 5,45 5-10
В3 Автомат АК-74 Патрон 57-Н-231 с пулей ПС-43 То же 3,4 715 7,62 5-10
Автомат АК-74 Патрон с пулей 7Н10 Стальной термо-упрочненный 3,5 880 5,45 5-10
В4 Автомат АКМ Патрон 57-Н-231 То же 7,9 715 7,62 5-10
В5а Автомат АКМ Патрон с броне-бойнозажигатель-ной пулей (Б3) Стальной 7,4 745 7,62 5-10
В5 Винтовка СВД патрон СТ-2М Стальной термо-упрочненный 9,6 825 7,62 5-10
В6 Винтовка СВД Патрон с пулей Б3-32 Стальной 10,4 820 7,62 5-10


Пожаробезопасное стекло

Во многих случаях остекление строительных конструкций должно быть пожаробезопасным, чтобы соответствовать строительным нормам, требующим ограничивать распространение огня при пожаре и обеспечивать безопасную эвакуацию людей из здания. Помимо применяемого для данных целей армированного стекла (рассмотренного выше), ведущими производителями стекол разработаны также специальные виды пожаробезопасных стекол. Например, многослойное ламинированное стекло с прозрачными, расширяющимися при воздействии высокой температуры, промежуточными слоями. В случае пожара, при температуре около 120 0С эти слои изменяют свои физические характеристики и стекло превращается в жесткую и непрозрачную защитную конструкцию, позволяющую остеклению сохранять:

  • целостность, т.е. гарантировать отсутствие сквозных трещин или отверстий, через которые на защищаемое пространство проникают продукты горения или пламя;
  • теплоизолирующую способность, препятствующую передаче тепла на защищаемое пространство излучением.

Электрообогреваемое стекло
Электрообогреваемое стекло изготавливается на основе низкоэмиссионного стекла с подключением к нему электрического тока. Это стекло функционирует как теплозеркало, которое пропускает свет, но отражает тепло. Таким образом, при подключении к источнику напряжения поверхность стекла нагревается, что может быть использовано в самых различных целях: снижение циркуляции холодного воздуха в помещениях, увеличение общей температуры (источник тела), снеготаяние и т.д. В зависимости от применения, диапазон электростекла - от 50 до 600 Вт/м2.

Самоочищающееся стекло
Самоочищающееся стекло - это обычное стекло со специальным покрытием внешней поверхности стекла, обладающим двойным действием. При попадании на стекло дневного света его покрытие реагирует на свет двумя способами. Во-первых, оно разрушает любые органические отложения грязи и, во-вторых, дождевая вода, стекая вниз по стеклу, смывает разрушенную органическую грязь.

Узорчатые стекла
Узорчатое стекло - это листовое стекло, одна поверхность которого имеет декоративную обработку. Оно может быть разных цветов, рисунков, различной толщины (4-6 мми иметь различную светопропускаемость. Узорчатое стекло можно закалять и ламинировать.
Большинство узорчатых стекол может использоваться в энергосберегающих или звукопоглощающих стеклопакетах.

Декорирование стекла
Для декорирования стекол применяются самые различные технологии: прозрачное и матовое травление, декорирование и роспись прозрачными и глухими термоотверждающимися красками, пескоструйная обработка, витражи и витражные имитации, фацетирование и малирование и другие.

Технология малирования представляет собой термическую обработку уже готового листового стекла, что позволяет придавать ему (разогрев до определенной температуры размягчения) требуемую форму, а затем, путем медленного остывания, сохранить ее в готовом изделии. Такая технология используется как для изготовления стеклянных вставок, так и в более сложных вариантах, для полукруглых дверей сантехнического оборудования (душевых кабин, ванн) и саун.

Пескоструйная обработка - это традиционная технология декорирования стекол, основанная на механической обработке поверхности стекла воздушной струей с частичками абразива. Получаемый при этом матовый рисунок может иметь различную зернистость и глубину обработки.

Химическое травление и матирование. Этот процесс основан на свойствах паров плавиковой кислоты взаимодействовать со стеклом, образуя нерастворимые соли. В зависимости от режима обработки, травление позволяет получить на незащищенных кислотостойкой мастикой местах как равномерно матовый, так и прозрачный, с различной глубиной обработки, рисунок. Данный процесс очень трудоемок и длителен, поэтому, как правило, используется только для декорирования дорогостоящих высокохудожественных изделий.
Фацетирование - это специальная обработка кромки стекла. Фацетированные вставки, как правило, применяются в дорогостоящих деревянных дверях, наиболее ценной считается обработка так называемого фигурного фацета красивых криволинейных поверхностей с высокой точностью.

Технология витража основана на наборе рисунка из кусков окрашенного в массе стекла. Стекло, применяемое для витражей, бывает рифленое, достаточно грубой формы; специальное листовое цветное и гладкое тонированное, обработанное фацетированием. Стекло соединяется в единое целое полосой из мягкого металла, имеющего специальное сечение.

Существуют и другие методы декорирования поверхности стекла. При необходимости получения цветного рисунка на стекле применяют, как правило, метод шелкографии, при котором используются специальные термоотверждаемые краски. В качестве недорогих методов декорирования используют роспись стекла, при которой не требуется последующая термическая обработка, а также декорирование прозрачными и непрозрачными пленками, имитирующими различные методы дорогой традиционной обработки (например витражи и матированное стекло).

Декоративные краски для стекла позволяют создавать различные текстуры поверхностей: эффекты "травленого" стекла, пескоструйной обработки, металлической текстуры и др. Применение негативных либо позитивных трафаретов позволяет получать на поверхности стекла рисунки или их комбинации.

Нанесение водорастворимых красок на стекло - несложный технологический процесс, позволяющий использовать их в мелкосерийном производстве. Краски можно наносить как на горизонтальные, так и на вертикальные поверхности.
Такие покрытия устойчивы к химическим и механическим воздействиям, влагостойки; пригодны для эксплуатации в условиях открытой атмосферы промышленной зоны умеренного климата; при дальнейшей обработке стекла (фацет, резка, гравировка) покрытие не нарушается.

Данные лакокрасочные покрытия используются при окраске стеклянных дверей и офисных перегородок, мебельных систем и т.п.

Просмотреть:

  • AGC Glass Russia / Эй Джи Си Гласс Россия
  • Архитектурное стекло
  • Энергоэффективное стекло
  • Окрашенное стекло LACOBEL
  • Матированное лакированное стекло
  • Полупрозрачное матированное стекло
  • Stopray Neo – стекло с высокоселективным покрытием Stopray
  • Stopsol Phoenix – стекло с солнцезащитным покрытием
  • Sunergy – селективное стекло с пиролитическим покрытием
  • Энергосберегающее стекло Planibel Top N +


  • К атегория:

    Шлифование и полирование стекла

    Понятие о стекле и классификация изделий из стекла

    Понятие о стекле. Твердые тела бывают кристаллические и аморфные (стекловидные). Кристаллические тела имеют геометрически правильную кристаллическую структуру, образуемую частицами (ионами или атомами) в строго повторяющемся по всему объему порядке (дальний порядок). Для них характерна постоянная температура плавления. Аморфные тела при повышении температуры постепенно размягчаются вплоть до образования расплава. Для них характерен ближний порядок, т. е. они имеют только небольшие участки правильной, упорядоченной структуры, которые несимметрично связаны между собой.

    Стеклом называют аморфные тела, получаемые путем переохлаждения расплава независимо от их химического состава и температурной области затвердевания и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым. По своей природе стекла - изотропные вещества, т. е. они имеют одинаковые физические свойства во всех направлениях, тогда как кристаллические тела - анизотропны, т. е. их свойства различны по разным направлениям.

    Стекло - это прозрачный (бесцветный или окрашенный) хрупкий материал. По типу стеклообразующего компонента различают стекла силикатные (на основе ЭЮг), боратные (на основе В203), боросиликатные, алюмосиликатные, бороалюмо-силикатные, фосфатные (на основе Р2О5) и др.

    Классификация изделий из стекла. Из стекла изготовляют различные изделия, которые классифицируют по различным признакам.

    По назначению изделия из стекла подразделяются на технические, строительные и бытовые.

    К техническому стеклу относятся оптическое, химико-лабораторное, медицинское, электротехническое, электродное, транспортное, приборное, защитное, тепло-, звуко- и электроизоляционное, светотехническое, кусковое, а также трубы, технические зеркала, фотостекло, стеклоткани и стеклопластики, фильтры, стеклоабразивы и различные стеклянные детали машин и установок. Это наиболее многочисленный класс изделий из стекла.

    В класс строительного стекла входят изделия из стекла, используемые в строительстве: оконное, витринное, профильное, армированное, узорчатое, облицовочное, пеностекло, мозаика, стеклопакеты, стеклоблоки, витражи, архитектурные, различные строительные детали, строительные стеклопластики и декоративные отделочные стеклоткани.

    Бытовое стекло - посудное и очковое, стеклотара, зеркала бытовые, эмали, глазури, украшения и имитации. К посудному стеклу относится сортовое стекло с художественной обработкой или без (стаканы, бокалы, рюмки, вазы, графины, салатники, сахарницы, пудреницы, термосы). Именно эти изделия чаще всего шлифуют и полируют.

    По характеру поверхности изделия из стекла бывают с глянцевой или неглянцевой поверхностью. Глянцевая поверхность получается металлизацией, покрытием полупроводником или проводником, органической пленкой и кремнийорганиче-скими соединениями. Отдельную группу составляют изделия с гладкей, химически травленной поверхностью. Неглянцевая, свободная от покрытий поверхность бывает матированная сплошная или узорчатая, зернистая, «морозная».

    По роду обработки изделия из стекла подразделяются на пять классов: первый - изделия, подвергнутые тепловой обработке, второй - изделия, поверхность которых имеет механическую (холодную) обработку; третий - с механической (холодной) обработкой краев изделий; четвертый - с химической обработкой; пятый - с поверхностными покрытиями.

    В соответствии с требованиями, предъявляемыми к каждой группе изделий, разработаны многочисленные составы стекол. Для удобства составы стекол выражают в процентах по массе оксидов, входящих в данное стекло, например:
    обычного Si02 -74,5; А1203 -0,5; СаО -6,5; MgO -2,0; Na20 -14,0; KjO - 2,0; хрустального Si02 -57,5; А1203 -0,5; К20-15,5; В203 - 1,5; ZnO-1,0; РЬО - 24,0 (в состав хрустальных стекол вводят до 24% РЬО , который улучшает блеск и колер стекла).


    Стекло известно всему человечеству уже довольно долго, а если быть точнее около 54-55 веков. И соответственно, в течение всего этого периода оно подверглось множествам изменений, можно даже сказать, что оно преобразилось. Так как на данный момент уже не один вид стекла, имеется целая классификация стекол . Без всяких сомнений, каким бы стекло ни было каждый его вид должен совмещать в себе те функции, которые были заложены в нем ранее. Если быть конкретнее то это:

    • - эстетичность;
    • - звукоизоляция;
    • - теплоизоляция;
    • - защита от перегрева;
    • - безопасность.

    Далее подробнее остановимся на имеющейся на данный момент классификации стекол

    1. Оконное стекло - это бесцветный и совершенно прозрачный лист. По правилам данный вид не должен содержать никаких пятен, затемнений и других дефектов, если, конечно же, это качественное стекло. Оконный лист может иметь оттенок зеленого или же голубого, но с учетом того, что коэффициент пропускаемости света не будет ниже установленной нормы.

    Не забывайте при выборе стекла о том, что чем оно прозрачнее и однороднее, тем оно качественнее и прочнее. Так как каждый дефект понижает его прочность в 90-100 раз, кроме тех, которые регламентированы специальными стандартами.

    И еще один пункт, который нужно бы запомнить, если вы собираетесь застеклить окна на нижних этажах, то выбирайте стекла толщиной 3 или 4 миллиметра. А если же на более высоком уровне и собираетесь установить большие витражи, то нужно выбирать стекла, толщина которых не менее 6 мм, то есть получается, что чем выше окно тем больше его толщина, но уже меньшая площадь.

    Как вы уже поняли, оконные стекла используются при застеклении витражей, балконов, оранжерей и других светопропускающих ограждений жилых помещений или же не жилых.

    2. Теплосберегающее или же энергосберегающее стекло - это вид стекла, покрытый оптическим покрытием, которое позволяет проходить в комнату коротковолновым солнечным излучениям, однако мешает выходу из комнаты длинноволновых тепловых излучений, к примеру, от тех же отопительных приборов.

    В нынешнее время известны следующие виды покрытий:

    • К-стекло (твердое покрытие);
    • i-стекло (мягкое покрытие).

    Если сравнивать данные покрытия, то твердое покрытие имеет слабовыраженную поверхностную дымку, заметную лишь при ярком свете. Но выглядит такое окно как будто бы оно в грязных отводах от воды.

    Такие виды стекол наиболее часто используются в более современных ныне ПВХ-окнах, которые существенно экономят энергию.

    Энергосберегающие окна обычно используются при производстве стеклопакетов.

    3. Солнцезащитное стекло - такое стекло, которое способно понижать пропуск световой энергии.

    Солнцезащитные стекла делятся на 2 типа:

    • существенно отражающие излучение;
    • существенно принимающие излучение.

    Солнцеотражающие стекла 1 типа - это оконные листы бесцветного или может даже крашеного стекла, одна из сторон которого в производственном процессе покрывается тонким слоем оксида металлов, который мешает проникновению излучения сквозь стекло. Отражающие слои в это же время поглощают часть излучения.

    Устанавливать стекла данного типа можно как покрытием внутрь, так и наружу. Смотря, какой оттенок вам нужен с внутренней стороны помещения.

    При изготовлении же поглощающего стекла на расплавленное стекло наносятся кристаллы или же окислы металлов, способные поглощать в себя часть излучения. В это же время стекла греются и соответственно отдают большую долю полученного ими тепла наружу. Часть тепла, все же передается вовнутрь помещения, что конечно нежелательно, так как в разы наращивает потребность в энергии, которая необходима для охлаждения помещения.

    Благодаря солнцезащитным стеклам в летнюю погоду в комнате не так жарко, яркость и контрастность освещаемых предметов намного меньше. И в результате чего люди меньше ощущают усталость. Но от прямых ярких солнечных лучей данные стекла, к сожалению, не помогают, поэтому шторы придется оставить.

    Солнцезащитные стекла используются при застеклении солнцезащитных устройств и окон, в большей степени их нужно использовать в офисных помещениях с кондиционерами.

    4. Узорчатое стекло - это стекольный лист, который имеет двухсторонний или же односторонний повторяющийся рельефный рисунок на прозрачном или цветном стекле. Узорчатое стекло считается декоративным элементом интерьера, и может поэтому оно пропускает все звуки как снаружи так и изнутри.

    Рисунок и цвет стекла должны соответствовать установленным стандартам. Глубина рельефа должна быть по установленным правилам - от 0,4 до 1,6 мм. По правилам узорчатое стекло также должно пропускать и распространять свет. Коэффициент пропускания света прозрачного стекла такого вида при освещении рассеивающимся светом, если узоры только односторонние - не меньше 0,75, а если узоры двухсторонние - 0,7. Пропускание света цветными узорчатами стеклами всегда определяется их составом, цветом покрытий и самого стекла и составляет 35-60%. Узорчатые стекла также могут использоваться при застеклении окон, дверных проемов, разнообразных ширм и перегородок.

    5. Армированное стекло - это стекло с простой металлической сеткой, оно полностью безопасное и пожаростойкое, и служит хорошей преградой от дыма. В случае пожара оно может и растрескаться, но арматура же удержит его на месте и предотвратит выход огня наружу. Куски стекла не выпадут даже при образовании ряда разломов. Армированные стекла могут использоваться при застеклении заводских цехов, окон, лифтов и фасадов.

    6. Закаленное стекло - это лист стекла, который может быть полированным, неполированным или даже узорчатым, который в дальнейшем закаливается на специальных закалочных устройствах.

    Закаливание стекла схоже с закаливанием стали. При этом нужно помнить то, что закаленное стекло уже не может механически обрабатываться, и поэтому данная процедура должна проводиться строго до процесса самого закаливания.

    Самым уязвимым или же хрупким местом закаленного стекла считаются его кромки. При реконструкции необходимо беречь его торцы от тяжелых ударов и остальных всевозможных повреждений. Пропускание света бесцветного прозрачного закаленного стекла должно составлять не менее 85 %.

    Закаленное стекло используется как при застеклении, так и при производстве так называемых изолирующих стеклопакетов или ламинированных стекол.

    7. Многослойное или же ламинированное стекло - это стекло, которое состоит из двух, трех и более слоев, объединенных друг с другом ламинирующей жидкостью.

    Ламинирование не способствует увеличению прочности стекла, но при разбивании многослойное стекло не бьется на маленькие кусочки благодаря ламинированной жидкости, т.е. кусочки остаются на ней. Ламинированное стекло дает также идеальную звукоизоляцию комнат, т.к. несколько слоев стекла способны эффективно понижать воздействие ненужных нам шумов. Ламинирующей пленкой возможно организовать практически любую тонировку стекла.

    Ламинированные стекла в большинстве случаев применяются при застеклении фасадов, балконов, окон, а так же для защиты от пуль, пожаров, шума и взлома.

    8. Самоочищающееся стекло - это самое обыкновенное стекло со специальным покрытием наружной поверхности стекла, которое обладает двойным эффектом. В том случае, когда на само стекло попадают отблески дневного света, его покрытие реагирует на свет двумя методами.

    Электровакуумные стекла . Определяющим параметром стекол для изготовления из них баллонов, ножек и других деталей электровакуумных приборов является температурный коэффициент линейного расширения. Он имеет очень важное значение при пайке и сварке различных стекол, при впайке металлической проволоки или ленты в стекло. Значения α l стекла и соединяемых с ним материалов должны быть приблизительно одинаковыми, так как иначе при изменении температуры может произойти растрескивание стекла, а также нарушение герметичности в месте ввода металлической проволоки в стекло. Кроме того, для высокочастотных приборов используют стекла с низкими диэлектрическими потерями. Электровакуумные стекла подразделяют и маркируют по численным значениям температурного коэффициента линейного расширения. Так как стекла – это материалы с маленьким значением температурного коэффициента линейного расширения, а у металлов наблюдается закономерная связь температуры плавления со значением температурного коэффициента линейного расширения, то в стекла удается впаивать только тугоплавкие металлы или металлические сплавы, у которых α l такой же, как у тугоплавких металлов.

    Поэтому электровакуумные стекла подразделяют на:

    По химическому составу электровакуумные стекла относятся к группе боросиликатных (В2О3 + SiO2) или алюмосиликатных (Аl2О3 + SiO2) материалов с добавками щелочных окислов. Названия «платиновое», «молибденовое», «вольфрамовое» определяются не составом стекла, а только тем, что значения αl этих стекол близки к αl , платины, молибдена, вольфрама. Температурный коэффициент линейного расширения возрастает при увеличении содержания щелочных окислов. В обозначении марки электровакуумного стекла после буквы С указывают значение αl и серия разработки. Например, марка С89-5 характеризует стекло с αl = 89 · 10–7 К–1 серии 5.

    Изоляторные стекла . Стекла легко металлизируются и используются в качестве герметизированных вводов в металлические корпусы различных приборов (конденсаторов, диодов, транзисторов и др.). Другим элементом изоляции, часто встречающимся в дискретных полупроводниковых приборах, является стеклянная буса, изолирующая металлические выводы прибора от фланца корпуса, на котором располагается полупроводниковый кристалл с p -n -переходами. Стеклянные бусы изготавливают из капилляров, нарезанных в виде трубок и колец определенных размеров. Обычно в качестве материала таких проходных изоляторов используют щелочное силикатное стекло.

    Цветные стекла . Обычные силикатные стекла прозрачны для излучения в видимой части спектра. Некоторые добавки придают стеклам соответствующую окраску: СаО – синюю, Сr2О3 – зеленую, МnО2 – фиолетовую и коричневую, UO3 – желтую и т.д., что используется при изготовлении цветных стекол, светофильтров, эмалей и глазурей.

    Лазерные стекла . Стекло может быть использовано в качестве рабочего тела в твердотельных лазерах. Генерирующими центрами являются активные ионы, равномерно распределенные в диэлектрической прозрачной матрице. Как правило, в стеклах отсутствуют ограничения в растворимости активирующих добавок. На практике наиболее часто применяют баритовый крон (ВаО – К2О – SiO2), активированный ионами неодима Nd3+.

    Основные преимущества стекол, используемых в лазерах, перед монокристаллами заключаются в их высокой технологичности, оптической однородности, изотропности свойств. Из стекла сравнительно легко изготовить однородные стержни большого размера, что необходимо для достижения высокой выходной мощности лазерного излучения. Однако отсутствие дальнего порядка вызывает уширение линий люминесценции активированного стекла. Следствием этого является снижение степени монохроматичности выходного излучения и увеличение пороговой мощности оптической накачки. К тому же стекла, по сравнению с монокристаллами, обладают невысокой теплопроводностью, что создает дополнительные трудности для осуществления непрерывного режима генерации. Поэтому лазеры на стекле лучше подходят для генерации импульсов с высокой энергией излучения.

    Стекловолокно . Из расплавленной стекломассы методом вытяжки через фильеру с последующей быстрой намоткой на вращающийся барабан можно получать тонкие волокна, обладающие хорошей гибкостью и повышенной механической прочностью. Большая гибкость и прочность стекловолокна объясняются ориентацией частиц поверхностного слоя стекла, имеющей место при вытягивании стекловолокна из расплавленной стекломассы и его быстром охлаждении. Весьма тонкие стеклянные волокна (диаметром 4–7 мкм) имеют настолько высокую гибкость, что могут обрабатываться способами текстильной технологии. Из стеклянных нитей, скрученных из отдельных волокон, ткут стеклянные ткани, ленты и шланги. Преимуществами стеклянной волокнистой изоляции перед изоляцией из органических волокон являются высокая нагрево-стойкость, значительная механическая прочность, относительно малая гигроскопичность и хорошие электроизоляционные свойства. Для производства стекловолокна используют щелочные алюмосиликатные, бесщелочные и малощелочные алюмоборосиликатные стекла.

    Световоды . Тонкие стеклянные волокна используют для передачи света между источником и приемником излучения. Отдельные волокна могут быть соединены в световые кабели (жгуты) с внутренними межволоконными светоизолирующими покрытиями. Совокупность методов и средств передачи световой информации с помощью тончайших волокон получила название волоконной оптики, которая является важной составной частью оптоэлектроники.

    Волоконные устройства имеют ряд преимуществ перед линзовыми. Они отличаются компактностью и надежностью. С их помощью можно осуществить поэлементную передачу изображения с достаточно высокой разрешающей способностью, причем передача изображения возможна по искривленному пути. Существенным моментом является скрытность передачи информации и высокая помехозащищенность оптического канала связи, в котором сами волокна играют роль световодов, т.е. служат направляющими системами – канализируют свет от источника к приемнику информации. Направляющее действие волокон достигается за счет эффекта многократного полного внутреннего отражения (рис. 6).

    Рис. 6. Пояснение к принципу действия световода

    Для передачи изображения используют волокна диаметром 5–15 мкм. Чтобы предотвратить просачивание света из одного волокна в другое, их снабжают светоизолируюшей оболочкой, которую изготавливают из стекла с меньшим показателем преломления, нежели у сердцевины. Тогда световой луч L, падая из среды, оптически более плотной (п 1– больший), на поверхность раздела со средой, оптически менее плотной (n 2 – меньший), под углом, большим предельного, будет испытывать полное внутреннее отражение и, многократно отражаясь, пойдет вдоль волокна, как это показано на отрезке отдельного волокна (рис. 6). Изображение целого объекта, например буквы К на странице книги, может быть передано по пучку согнутых волокон, если передающий конец световода 1 поставить на освещаемый по световоду объект; на приемном конце световода 2 изображение будет мозаичным, как это показано в верхней части рис. 6. Световой кабель диаметром 5–6 мм содержит несколько сотен тысяч светоизолированных волокон. Для правильной передачи изображения требуется регулярная укладка волокон в жгуте, т.е. относительное расположение волокон на его входном и выходном торцах должно быть одинаковым.

    С помощью волоконных жгутов легко осуществить преобразование оптического изображения, его кодирование и дешифровку. Световые кабели из волокон с коническим сечением могут усиливать освещенность объектов за счет концентрации светового потока, уменьшать или увеличивать изображение.

    Специальные технологические приемы (осаждение пленок на подложку, ионное легирование, ионный обмен) позволяют изготовить плоские световоды, которые являются основой оптических интегральных схем.

    Согласно определению Комиссии по терминологии АН СССР (1932г.) «стеклом называются все аморфные тела, получаемые путем переохлаж­дения расплава независимо от их состава и температурной области за­твердевания и обладающие в результате постепенного увеличения вяз­кости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым» .

    Из определения следует, что в стеклообразном состоянии могут нахо­диться вещества, принадлежащие к разным классам химических соеди­нений.

    Органические стекла представляют собой органические полимеры-полиакрилаты, поликарбонаты, полистирол, сополимеры винилхлорида с метилметакрилатом, - находящиеся в стеклообразном состоянии. Наибольшее практическое применение нашли стекла на основе полиметил-метакрилата. По своей технологии, механизму твердения и строению ор­ганические стекла существенно отличаются от неорганических и состав­ляют особый объект изучения.

    Многовековая история стеклоделия связана с изготовлением сили­катных стекол, основывающихся на системе Na 2 O-СаО-SiO 2 . Только во второй половине XX в. было показано, что натрий-кальций-силикатные стекла составляют небольшую часть безграничного мира неоргани­ческих стекол.

    По типу неорганических соединений различают следующие классы стекол: элементарные, галогенидные, халькогенидные, оксидные, метал­лические, сульфатные, нитратные, карбонатные и др.

    Элементарные стекла с пособны образовывать лишь небольшое число элементов - сера, селен, мышьяк, фосфор, углерод.

    Стеклообразные - серу и селен, удается получить при быстром переохлаждении расплава; мышьяк - методом сублимации в вакууме; фос­фор-при нагревании до 250°С под давлением более 100 МПа; угле­род-в результате длительного пиролиза органических смол. Промыш­ленное значение находит стеклоуглерод, обладающий уникальными свойствами, превосходящими свойства кристаллических модификации углерода: он способен оставаться в твердом состоянии вплоть до 3700°С, имеет низкую плотность порядка 1500 кг/м 3 , обладает высокой механи­ческой прочностью, электропроводностью, химически устойчив.

    Галогенидные стекла получают на основе стеклообразующего ком­понента BeF 2 . Многокомпонентные составы фторбериллатных стекол со­держат также фториды алюминия, кальция, магния, стронция, бария. Фторбериллатные стекла находят практическое применение благодаря высокой устойчивости к действию жестких излучений, включая рентге­новские лучи, и таких агрессивных сред, как фтор и фтористый во­дород.

    Халькогенидные стекла получают в бескислородных системах типа As-J (где Z-S, Se, Te), Ge-As-X, Ge - Sb - X , Qe - P - X и др. Халь­когенидные стекла имеют высокую прозрачность в ИК-области спектра, обладают электронной проводимостью, обнаруживают внутренний фото­эффект. Стекла применяются в телевизионных высокочувствительных камерах, в электронно-вычислительных машинах в качестве переключа­телей или элементов запоминающих устройств.

    Оксидные стекла представляют собой обширный класс соединении. Наиболее легко образуют стекла оксиды SiO 2 , GeO 2 , ВгО 3 , P 2 O 5 .

    Большая группа оксидов - TeO 2 , TiО 2 , SeО 2 , WO 2 , BiO 5 ,

    Например, легко образуются стекла в систе­мах CaO-Al 2 O 5 , СаО-МgО 3 -ВаО 3 , P 5 O 5 - Ws .

    Каждый из стеклообразующих оксидов может образовать стекла в комбинации с промежуточными или модифицирующими оксидами. Стек­ла получают названия по виду стеклообразующего оксида: силикатные, боратные, фосфатные, германатные и т.д. Практическое значение име­ют стекла простых и сложных составов, принадлежащие к силикатным, боратным, боросиликатным, фосфатным, германатным, алюминатным, молибдатным, вольфраматным и другим системам.

    Промышленные составы стекол содержат, как правило, не менее 5 компонентов, а специальные и оптические стекла могут содержать более 10 компонентов.

    Важнейшее достоинство стекольной технологии состоит в том, что она позволяет получать в твердом состоянии вещества с нестехиометрическим соотношением компонентов, которые не существуют в кристалличе­ском состоянии. Более того, свойства стекол удается плавно регулиро­вать в нужном направлении путем постепенного изменения состава.

    Стекла, полученные на основе нитратных, сульфатных и карбонат­ных соединений, в настоящее время представляют научный интерес, но практического применения пока не имеют.

    Традиционная технология получения стекол включает переохлажде­ние расплава до твердого состояния без кристаллизации. На этом спо­собе основана мировая промышленная технология производства стекла.

    Создание технических устройств, позволяющих отводить тепло с бо­лее высокой скоростью, расширяет число веществ, которые удается по­лучить в стеклообразном состоянии путем охлаждения расплава. Сверх­высокие скорости переохлаждения порядка нескольких миллионов гра­дусов в 1 с позволяют фиксировать в стеклообразном состоянии сплавы металлов (например, в системе Fe-Mi-В-Р).

    Промышленное значение приобретают способы получения стекол пу­тем вакуумного испарения, конденсации из паровой фазы, плазменного напыления. В этих случаях стекло удается получить из газовой фазы, минуя расплавленное состояние.

    Облучение кристаллов частицами высоких энергий или воздействие на них ударной волны приводит к неупорядоченному смещению частиц из положений равновесия и, таким образом, к аморфизации структуры, в результате чего твердые кристаллические вещества могут быть пере­ведены в стеклообразное состояние, минуя стадию плавления.

    Похожие публикации