ШИМ регулятор оборотов: схема модуля управления мотором. Широтно-импульсная модуляция (ШИМ)

На форуме достаточно часто встречаются вопросы по реализации Широтно Импульсной Модуляции на микроконтроллерных устройствах. Я и сам очень много спрашивал по этому поводу и, разобравшись, решил облегчить труд новичкам в этой области, так как информации в сети много и рассчитана она на разработчиков разного уровня, а сам я только- только в нем разобрался и память ещё свежа.

Так как для меня самым важным было применение ШИМ именно для управления яркостью светодиодов, то именно их я и буду использовать в примерах. В качестве микроконтроллера будем использовать горячо любимый ATmega8.

Для начала вспомним, что такое ШИМ. ШИМ сигнал - это импульсный сигнал определенной частоты и скважности:

Частота, это количество периодов за одну секунду. Скважность- отношение длительности импульса к длительности периода. Можно изменять и то и другое, но для управления светодиодами достаточно управлять скважностью. На картинке выше мы видим ШИМ сигнал со скважностью 50 %, так как длительность импульса (ширина импульса) ровно половина от периода. Соответственно светодиод будет ровно половину времени во включенном состоянии и половину в выключенном. Частота ШИМ очень большая и глаз не заметит мерцания светодиода из за инерционности нашего зрения, поэтому нам будет казаться, что светодиод светится на половину яркости. Если мы изменим скважность на 75%, то яркость светодиода будет на 3 четверти от полной, а график будет выглядеть так:

Получается, что мы можем регулировать яркость светодиода от 0 до 100 %. А теперь поговорим о таком параметре ШИМ, как разрешение. Разрешение- это количество градаций (шагов) регулировки скважности, мы будем рассматривать разрешение в 256 шагов.

С параметрами вроде разобрались, теперь поговорим о том, как нам получить этот самый ШИМ от микроконтроллера. Берем остро заточенный разогретый паяльник и начинаем пытать МК, одновременно подцепившись к двум его ногам осциллографом и проверяя наличие на них сигнала нужной нам скважности. В микроконтроллерах есть аппаратная поддержка ШИМ и несколько каналов для него, в нашем случае 3. За выдачу ШИМ отвечают определенные выводы МК, в нашем случае OC2, OC1A, OC1B (15,16,17 нога в DIP корпусе). Так же для этого используются таймеры микроконтроллера, в нашем случае TC1, TC2. Так как же сконфигурировать МК для выдачи сигнала необходимой скважности? Все очень просто, для начала сконфигурируем нужные нам ноги на выход:

PORTB=0x00; DDRB=0x0E; // 0b00001110

Далее начнем конфигурировать таймеры. Для таймера TC1 нам потребуются два регистра: TCCR1A и TCCR1B. Открываем даташит и читаем как настраиваются эти регистры. Я настроил его на 8 битный сигнал ШИМ, что соответствует разрешению в 256 шагов:

TCCR1A=0xA1; TCCR1B=0x09;

Для таймера TC2 мы будем использовать регистр TCCR2=0x69;. Его настройка выглядит так:

TCCR2=0x69;

Всё, таймеры сконфигурированы. Скважность будем задавать регистрами OCR1A,OCR1B, OCR2:

Зададим требуемые скважности:

OCR1A=0x32; //50 шагов OCR1B=0x6A; //106 шагов OCR2=0xF0; //240 шагов

Ну и поместим инкремент и декремент этих регистров в бесконечный цикл:

While(1) { OCR1A++; OCR1B--; OCR2++; delay_ms(50); }

Первая тестовая программа готова и выглядит для CVAVR она так:

#include "mega8.h" #include "delay.h" void main(void) { PORTB=0x00; DDRB=0x0E; // 0b00001110 TCCR1A=0xA1; TCCR1B=0x09; TCCR2=0x69; OCR1A=0x32; //50 шагов OCR1B=0x6A; //106 шагов OCR2=0xF0; //240 шагов while (1) { OCR1A++; OCR1B--; OCR2++; delay_ms(50); }; }

Дорогой Бобот, не мог бы ты немного побольше рассказать об импульсах?

Хорошо, что ты попросил, дружище Бибот. Так как именно импульсы являются главными носителями информации в цифровой электронике, поэтому очень важно знать разные характеристики импульсов. Начнём, пожалуй, с одиночного импульса.

Электрический импульс - это всплеск напряжения или тока в определённом и конечном промежутке времени.

Импульс всегда имеет начало (передний фронт) и конец (спад).
Ты уже наверняка знаешь, что в цифровой электронике все сигналы могут быть представлены всего двумя уровнями напряжения: "логической единицей" и "логическим нулём". Это всего лишь условные величины напряжения. "Логической единице" приписывается высокий уровень напряжения, обычно около 2-3 вольт, "логическим нулём" считается близкое к нулю напряжение. Цифровые импульсы графически изображаются прямоугольными или трапециевидными по форме:

Главной величиной одиночного импульса является его длина. Длина импульса - это отрезок времени, в течение которого рассматриваемый логический уровень имеет одно устойчивое состояние. На рисунке латинской буквой t отмечена длина импульса высокого уровня, то есть логической "1". Длина импульса измеряется в секундах, но чаще в миллисекундах (мс), микросекундах (мкс) и даже наносекундах (нс). Одна наносекунда - это очень короткий отрезок времени!
Запомни: 1 мс = 0,001 сек.
1 мкс = 0,000001 сек
1 нс = 0,000000001 сек

Применяются также англоязычные сокращения: ms - миллисекунда, μs - микросекунда, ns - наносекунда.

За одну наносекунду я даже пикнуть не успею!
Скажи, Бобот, а что произойдёт, если импульсов будет много?

Хороший вопрос, Бибот! Чем больше импульсов, тем больше информации можно ими передать. У множества импульсов появляется много характеристик. Самая простая - частота следования импульсов.
Частота следования импульсов - это количество полных импульсов в единицу времени. За единицу времени принято брать одну секунду. Единицей измерения частоты является герц, по имени немецкого физика Генриха Герца . Один герц - это регистрация одного полного импульса за одну секунду. Если произойдёт тысяча колебаний в секунду будет 1000 герц, или сокращённо 1000 Гц, что равно 1 килогерцу, 1 кГц. Можно встретить и англоязычное сокращение: Hz - Гц. Частота обозначается буквой F .

Существуют ещё несколько характеристик, которые проявляются только при участии двух и более импульсов. Одним из таких важных параметров импульсной последовательности является период.
Период импульсов - это промежуток времени, между двумя характерными точками двух соседних импульсов. Обычно период измеряют между двух фронтов или двух спадов соседних импульсов и обозначают заглавной латинской буквой T .


Период следования импульсов напрямую связан с частотой импульсной последовательности, и его можно вычислить по формуле: T=1/F
Если длина импульса t точно равна половине периода T , то такой сигнал часто называют "меандр ".

Скважностью импульсов называется отношение периода следования импульсов к их длительности и обозначается буквой S: S=T/t Скважность - безразмерная величина и не имеет единиц измерения, но может быть выражена в процентах. Часто в англоязычных текстах встречается термин Duty cycle, это так называемый коэффициент заполнения.
Коэффициент заполнения D является величиной, обратной скважности. Коэффициент заполнения обычно выражается в процентах и вычисляется по формуле: D=1/S

Дорогой Бобот, так много разного и интересного у простых импульсов! Но потихоньку я уже начинаю путаться.

Дружище, Бибот, это ты верно заметил, импульсы - не так уж и просты! Но осталось совсем чуть-чуть.

Если ты меня внимательно слушал, то ты мог заметить, что если увеличивать или уменьшать длину импульса и при этом на столько же уменьшать или увеличивать паузу между импульсами, то период следования импульсов и частота останется неизменной! Это очень важный факт, который нам ещё не раз понадобится в будущем.

Но сейчас ещё хочется добавить другие способы передачи информации с помощью импульсов.
Например, можно несколько импульсов объединить в группы. Такие группы с паузами определённой длины между ними называют пачками или пакетами. Генерируя разное число импульсов в группе и варьируя его, можно также передавать какую-либо информацию.


Для передачи информации в цифровой электронике (ещё её называют дискретной электроникой) можно использовать два и более проводников или каналов с разными импульсными сигналами. При этом информация передаётся с учётом определённых правил. Такой метод позволяет заметно увеличить скорость передачи информации или добавляет возможность управлением потоком информации между различными схемами.

Перечисленные возможности передачи информации с помощью импульсов могут быть использованы как сами по себе раздельно, так и в комбинации между собой.
Существуют также множество стандартов передачи информации с помощью импульсов, например I2C, SPI, CAN, USB, LPT.

Представляем простую конструкцию регулятора мощности, схема которого построена на таймере 555, работающем в режиме ШИМ. Транзисторы IRF3205 являются управляемыми элементами, причем транзисторы соединены параллельно для уменьшения сопротивления и лучшего рассеивания тепла.

Схема ШИМ на 12 В для ламп

Напряжение от трансформатора выпрямляется мостом на 50 А, установленным на радиаторе. Подается оно далее на стабилизатор 8 В, а затем в схему управления. Устройство должно было работать с несколькими галогенками 12 В 50 Вт.

Кстати, вы можете хорошо уменьшить нагрев транзисторов снизив частоту коммутации — на это стоит обратить внимание.

При полной яркости будет ток в нагрузке около 25 А. Так что уделите особое внимание винтовым соединительным разъемам. Кабели сечением 1,5 мм2 тоже недостаточны для такого большого тока.

Конечно, затворы лучше переключать напряжением около 10 — 12 В (не более 15 В для безопасности МОП-транзисторов), чем 6 В, хотя бы для того чтобы быть уверенным в их насыщении во включенном состоянии. А более высокое напряжение также означает более быструю перезагрузку затворов, что приводит к более короткому переходному времени, а это снижает потери мощности на них. Если они не насыщаются, то тепло, генерируемое на них с высокой рабочей мощностью, заставит транзисторы сильно греться.

Чтобы поднять управляющее напряжение, достаточно подключить R3 напрямую к источнику питания, а не к стабилизатору. Чтобы ускорить переключение, предлагаем конденсатор 0.1 мкФ поставить параллельно с R2 и, если необходимо, дополнительно в ряд перед этим параллельным соединением резистор, чтобы минимизировать токи при разряде конденсатора.

Вместо резистора R3 ещё лучше ставить резисторы 5-10 Ом в затворах mosfet и использовать более мощные биполярные транзисторы, например семейства BD136 — BD140 соответствующих типов проводимости.

Упрощенный ШИМ 12V регулятор постоянного тока

Для регуляторов оборотов мотора постоянного тока можно использовать эту, показанную выше схему. Здесь нет необходимости использовать управляющие транзисторы. Mosfet могут быть подключены параллельно, добавив один 30-ти омный резистор к затвору каждого транзистора. Плату можете .

Раньше для питания устройств использовали схему с понижающим (или повышающим, или многообмоточным) трансформатором, диодным мостом, фильтром для сглаживания пульсаций. Для стабилизации использовались линейные схемы на параметрических или интегральных стабилизаторах. Главным недостатком был низкий КПД и большой вес и габариты мощных блоков питания.

Во всех современных бытовых электроприборах используются импульсные блоки питания (ИБП, ИИП - одно и то же). В большинстве таких блоков питания в качестве основного управляющего элемента используют ШИМ-контроллер. В этой статье мы рассмотрим его устройство и назначение.

Определение и основные преимущества

ШИМ-контроллер - это устройство, которое содержит в себе ряд схемотехнических решений для управления силовыми ключами. При этом управление происходит на основании информации полученной по цепям обратной связи по току или напряжению - это нужно для стабилизации выходных параметров.

Иногда, ШИМ-контроллерами называются генераторы ШИМ-импульсов, но в них нет возможности подключить цепи обратной связи, и они подходят скорее для регуляторов напряжения, чем для обеспечения стабильного питания приборов. Однако в литературе и интернет-порталах часто можно встретить названия типа «ШИМ-контроллер, на NE555» или «… на ардуино» - это не совсем верно по вышеуказанным причинам, они могут использоваться только для регулирования выходных параметров, но не для их стабилизации.

Аббревиатура «ШИМ» расшифровывается, как широтно-импульсная модуляция - это один из методов модуляции сигнала не за счёт величины выходного напряжения, а именно за счёт изменения ширины импульсов. В результате формируется моделируемый сигнал за счёт интегрирования импульсов с помощью C- или LC-цепей, другими словами - за счёт сглаживания.

Вывод: ШИМ-контроллер - устройство, которое управляет ШИМ-сигналом.

Основные характеристики

Для ШИМ-сигнала можно выделить две основных характеристики:

1. Частота импульсов - от этого зависит рабочая частота преобразователя. Типовыми являются частоты выше 20 кГц, фактически 40-100 кГц.

2. Коэффициент заполнения и скважность. Это две смежных величины характеризующие одно и то же. Коэффициент заполнения может обозначаться буквой S, а скважность D.

где T - это период сигнала,

Часть времени от периода, когда на выходе контроллера формируется управляющий сигнал, всегда меньше 1. Скважность всегда больше 1. При частоте 100 кГц период сигнала равен 10 мкс, а ключ открыт в течении 2.5 мкс, то коэффициент заполнения - 0.25, в процентах - 25%, а скважность равна 4.

Также важно учитывать внутреннюю конструкцию и предназначение по количеству управляемых ключей.

Отличия от линейных схем потери

Как уже было сказано, преимуществом перед линейными схемами является высокий КПД (больше 80, а в настоящее время и 90%). Это обусловлено следующим:

Допустим сглаженное напряжение после диодного моста равно 15В, ток нагрузки 1А. Вам нужно получить стабилизированное питание напряжением 12В. Фактически линейный стабилизатор представляет собой сопротивление, которое изменяет свою величину в зависимости от величины входного напряжения для получения номинального выходного - с небольшими отклонениями (доли вольт) при изменениях входного (единицы и десятки вольт).

На резисторах, как известно, при протекании через них электрического тока выделяется тепловая энергия. На линейных стабилизаторах происходит такой же процесс. Выделенная мощность будет равна:

Pпотерь=(Uвх-Uвых)*I

Так как в рассмотренном примере ток нагрузки 1А, входное напряжение 15В, а выходное - 12В, то рассчитаем потери и КПД линейного стабилизатора (КРЕНка или типа L7812):

Pпотерь=(15В-12В)*1А = 3В*1А = 3Вт

Тогда КПД равен:

n=Pполезная/Pпотр

n=((12В*1А)/(15В*1А))*100%=(12Вт/15Вт)*100%=80%

Основной особенностью ШИМ является то, что силовой элемент, пусть это будет MOSFET, либо открыт полностью, либо полностью закрыт и ток через него не протекает. Поэтому потери КПД обусловлены только потерями проводимости

И потерями переключения. Это тема для отдельной статьи, поэтому не будем останавливаться на этом вопросе. Также потери блока питания возникают (входных и выходных, если блок питания сетевой), а также на проводниках, пассивных элементах фильтра и прочем.

Общая структура

Рассмотрим общую структуру абстрактного ШИМ-контроллер. Я употребил слово "абстрактного" потому что, в общем, все они похожи, но их функционал все же может отличаться в определенных пределах, соответственно будет отличаться структура и выводы.

Внутри ШИМ-контроллера, как и в любой другой ИМС находится полупроводниковый кристалл, на котором расположена сложная схема. В состав контроллера входят следующие функциональные узлы:

1. Генератор импульсов.

2. Источник опорного напряжения. (ИОН)

3. Цепи для обработки сигнала обратной связи (ОС): усилитель ошибки, компаратор.

4. Генератор импульсов управляет встроенными транзисторами , которые предназначены для управления силовым ключом или ключами.

Количество силовых ключей, которыми может управлять ШИМ-контроллер, зависит от его предназначения. Простейшие обратноходовые преобразователи в своей схеме содержат 1 силовой ключ, полумостовые схемы (push-pull) - 2 ключа, мостовые - 4.

От типа ключа также зависит выбор ШИМ-контроллера. Для управления биполярным транзистором основным требованием является, чтобы выходной ток управления ШИМ-контроллера не был ниже, чем ток транзистора деленный на H21э, чтобы его включать и отключать достаточно просто подавать импульсы на базу. В этом случае подойдет большинство контроллеров.

В случае управления есть определенные нюансы. Для быстрого отключения нужно разрядить емкость затвора. Для этого выходную цепь затвора выполняют из двух ключей - один из них соединен с источником питания с выводом ИМС и управляет затвором (включает транзистор), а второй установлен между выходом и землей, когда нужно отключить силовой транзистор - первый ключ закрывается, второй открывается, замыкая затвор на землю и разряжает его.

Интересно:

В некоторых ШИМ-контроллрах для маломощных блоков питания (до 50 Вт) силовые ключи встроенные и внешние не используются. Пример - 5l0830R

Если говорить обобщенно, то ШИМ-контроллер можно представить в виде компаратора, на один вход которого подан сигнал с цепи обратной связи (ОС), а на второй вход пилообразный изменяющийся сигнал. Когда пилообразный сигнал достигает и превышает по величине сигнал ОС, то на выходе компаратора возникает импульс.

При изменениях сигналов на входах ширина импульсов меняется. Допустим, что вы подключили мощный потребитель к блоку питания, и на его выходе напряжение просело, тогда напряжение ОС также упадет. Тогда в большей части периода будет наблюдаться превышение пилообразного сигнала над сигналом ОС, и ширина импульсов увеличится. Всё вышесказанное в определенной мере отражено на графиках.

Функциональная схема ШИМ-контроллера на примере TL494, мы рассмотрим его позже подробнее. Назначение выводов и отдельных узлов описано в следующем подзаголовке.

Назначение выводов

ШИМ-контроллеры выпускаются в различных корпусах. Выводов у них может быть от трех до 16 и более. Соответственно от количества выводов, а вернее их назначения зависит гибкость использования контроллера. Например, в популярной микросхеме - чаще всего 8 выводов, а в еще более культовой - TL494 - 16 или 24.

Поэтому рассмотрим типовые названия выводов и их назначение:

    GND - общий вывод соединяется с минусом схемы или с землей.

    Uc (Vc) - питание микросхемы.

    Ucc (Vss, Vcc) - Вывод для контроля питания. Если питание проседает, то возникает вероятность того, что силовые ключи не будут полностью открываться, а из-за этого начнут греться и сгорят. Вывод нужен чтобы отключить контроллер в подобной ситуации.

    OUT - как видно из название - это выход контроллера. Здесь выводятся управляющий ШИМ-сигнал для силовых ключей. Выше мы упомянули, что в преобразователях разных топологий имеют разное количество ключей. Название вывода может отличаться в зависимости от этого. Например, в контроллерах для полумостовых схем он может называться HO и LO для верхнего и нижнего ключа соответственно. При этом и выход может быть однотактный и двухтактный (с одним ключем и двумя) - для управления полевыми транзисторами (пояснение см. выше). Но и сам контроллер может быть для однотактной и двухтактной схемы - с одним и двумя выходными выводами соответственно. Это важно.

    Vref - опорное напряжения, обычно соединяется с землей через небольшой конденсатор (единицы микрофарад).

    ILIM - сигнал с датчика тока. Нужен для ограничения выходного тока. Соединяется с цепями обратной связи.

    ILIMREF - на ней устанавливается напряжение срабатывания ножки ILIM

    SS - формируется сигнал для мягкого старта контроллера. Предназначен для плавного выхода на номинальный режим. Между ней и общим проводом для обеспечения плавного пуска устанавливают конденсатор.

    RtCt - выводы для подключения времязадающей RC-цепи, которая определяет частоту ШИМ-сигнала.

    CLOCK - тактовые импульсы для синхронизации нескольких ШИМ-контроллеров между собой тогда RC-цепь подключается только к ведущему контроллеру, а RT ведомых с Vref, CT ведомых соединяюся с общим.

    RAMP - это ввод сравнения. На него подают пилообразное напряжение, например с вывода Ct, Когда оно превышает значение напряжение на выходе усиления ошибки, то на OUT появляется отключающий импульс - основа для ШИМ-регулирования.

    INV и NONINV - это инвертирующий и неинвертирующий входы компаратора, на котором построен усилитель ошибки. Простыми словами: чем больше напряжении на INV - тем длинее выходные импульсы и наоборот. К нему подключается сигнал с делителя напряжения в цепи обратной связи с выхода. Тогда неинвертирующий вход NONINV подключают к общему проводу - GND.

    EAOUT или Error Amplifier Output рус. Выход усилителя ошибки. Не смотря на то, что есть входы усилителя ошибки и с их помощью, в принципе можно регулировать выходные параметры, но контроллер довольно медленно на это реагирует. В результате медленной реакции может возникнуть возбуждение схемы, и она выйдет из строя. Поэтому с этого вывода через частотозависимые цепи подают сигналы на INV. Это еще называется частотной коррекцией усилителя ошибки.

Примеры реальных устройств

Для закрепления информации давайте рассмотрим несколько примеров типовых ШИМ-контроллеров и их схем включения. Мы будем делать это на примере двух микросхем:

    TL494 (её аналоги: KA7500B, КР1114ЕУ4, Sharp IR3M02, UA494, Fujitsu MB3759);

Они активно используются . Кстати, эти блоки питания обладают немалой мощностью (100 Вт и больше по 12В шине). Часто используются в качестве донора для переделки под лабораторный блок питания или универсальное мощное зарядное устройство, например для автомобильных аккумуляторов.

TL494 - обзор

Начнем с 494-й микросхемы. Её технические характеристики:

В этом конкретном примере можно видеть большинство описанных выше выводов:

1. Неинвертирующий вход первого компаратора ошибки

2. Инвертирующий вход первого компаратора ошибки

3. Вход обратной связи

4. Вход регулировки мертвого времени

5. Вывод для подключения внешнего времязадающего конденсатора

6. Вывод для подключения времязадающего резистора

7. Общий вывод микросхемы, минус питания

8. Вывод коллектора первого выходного транзистора

9. Вывод эмиттера первого выходного транзистора

10. Вывод эмиттера второго выходного транзистора

11. Вывод коллектора второго выходного транзистора

12. Вход подачи питающего напряжения

13. Вход выбора однотактного или же двухтактного режима работы микросхемы

14. Вывод встроенного источника опорного напряжения 5 вольт

15. Инвертирующий вход второго компаратора ошибки

16. Неинвертирующий вход второго компаратора ошибки

На рисунке ниже изображен пример компьютерного блока питания на этой микросхеме.

UC3843 - обзор

Другой популярной ШИМ является микросхема 3843 - на ней также строятся компьютерные и не только блоки питания. Её цоколевка расположена ниже, как вы можете наблюдать, у неё всего 8 выводов, но функции она выполняет те же, что и предыдущая ИМС.

Интересно:

Бывает UC3843 и в 14-ногом корпусе, но встречаются гораздо реже. Обратите внимание на маркировку - дополнительные выводы либо дублируются, либо незадействованы (NC).

Расшифруем назначением выводов:

1. Вход компаратора (усилителя ошибки).

2. Вход напряжения обратной связи. Это напряжение сравнивается с опорным внутри ИМС.

3. Датчик тока. Подключается к резистору стоящему в между силовым транзистором и общим проводом. Нужен для защиты от перегрузок.

4. Времязадающая RC-цепь. С её помощью задаётся рабочая частота ИМС.

6. Выход. Управляющее напряжение. Подключается к затвору транзистора, здесь двухтактный выходной каскад для управления однотактным преобразователем (одним транзистором), что можно наблюдать на рисунке ниже.

Понижающего (Buck), повышающего (Boost) и понижающее-повышающего (Buck-Boost) типов.

Пожалуй, одним из наиболее удачных примеров будет распространенная микросхема LM2596, на базе которого на рынке можно найти массу таких преобразователей, как изображен ниже.

Такая микросхема содержит в себе все вышеописанные технические решения, а также вместо выходного каскада на маломощных ключах в ней встроен силовой ключ, способный выдержать ток до 3А. Ниже изображена внутренняя структура такого преобразователя.

Можно убедиться, что в сущности особых отличий от рассмотренных в ней нет.

А вот пример на подобном контроллере, как видите силового ключа нет, а только микросхема 5L0380R с четырьмя выводами. Отсюда следует, что в определенных задачах сложная схемотехника и гибкость TL494 просто не нужна. Это справедливо для маломощных блоков питания, где нет особых требований к шумам и помехам, а выходные пульсации можно погасить LC-фильтром. Это блок питания для светодиодных лент, ноутбуков, DVD-плееров и прочее.

Заключение

В начале статьи было сказано о том, что ШИМ-контроллер это устройство которое моделирует среднее значение напряжения за счет изменения ширина импульсов на основании сигнала с цепи обратной связи. Отмечу, что названия и классификация у каждого автора часто отличается, иногда ШИМ-контроллером называют простой ШИМ-регулятор напряжения, а описанное в этой статьей семейство электронных микросхем называют «Интегральная подсистема для импульсных стабилизированных преобразователей». От названия суть не меняется, но возникают споры и недопонимания.

ШИМ или в английском PWM (Pulse-Width Modulation) широтно-импульсная модуляция - способ используемый для контроля величины напряжения и тока. Принцип действия ШИМ состоит в изменении ширины импульса постоянной амплитуды при постоянной частоте.

Принципы ШИМ регулирования получили широкое распространение в импульсных преобразователях, в , яркостью свечения светодиодов и т.п.


Принцип действия ШИМ

Принцип действия состоит в изменении ширины импульса сигнала. При использовании способа широтно-импульсной модуляции, частота сигнала и амплитуда будут всегда постоянными. Важнейшим параметром сигнала ШИМ считают коэффициент заполнения, который можно вычислить по формуле.

где T = T ON + T OFF ; T ON - время высокого уровня; TOFF - время низкого уровня; T - период сигнала

Время высокого уровня и низкого уровня сигнала показано на рисунке выше. Остается добавить, то что U1- это состояния высокого уровня сигнала, то есть амплитуда.

Допустим у нас имеется ШИМ сигнал с заданным временным интервалом высокого и низкого уровня, смотри рисунок:

Подставив в формулу коэффициента заполнения ШИМ имеющиеся данные получим: 300/800=0,375. Для того чтобы узнать процентный коэффициент заполнения требуется результат умножить еще на 100%, т.е К ω% = 37,5% . Коэффициент заполнения это абстрактное значение.

Еще одним важнейшим параметром ШИМ считается также частота сигнала, которая определяется по известной формуле:

f=1/T=1/0,8=1,25 Гц

Благодаря возможности настройки ширины импульса можно регулировать среднее значение напряжения. На рисунке приведены различные коэффициенты заполнения при одной и той же частоте и амплитуды.

Для нахождения среднего значения напряжения ШИМ требуется коэффициент заполнения 37,5% и амплитуда 12 В:

U sr =К ω ×U 1 =0,375×12=4,5 Вольта

ШИМ позволяет понижать напряжение в интервале от U 1 и до 0. Это свойство часто используется в , или скорости вращения вала двигателя постоянного тока.

Сигнал ШИМ в электронике формируют с помощью микроконтроллера или какой-либо аналоговой схемой. Сигнал от них должен быть низкого уровня напряжения и очень малым током на выходе схемы. В случае если необходимо управление мощной нагрузкой, можно использовать типовую систему управления, с помощью биполярного или .

Сигнал ШИМ следует на базу транзистора через сопротивление R1, поэтому VT1 с изменением сигнала то открывается, то запирается. Если транзистор открыт, светодиод горит. А в момент времени, когда транзистор запирается, и светодиод тухнет. Если частота сигнала мала, то получим мигающий светодиод. При частоте от 50 Гц мигания уже не незаметны человеческим глазом, и мы видим эффект снижения яркости свечения. Чем ниже значение коэффициента заполнения, тем слабее будет гореть светодиод.

Этот же принцип и похожую электронную схему можно применить и в случае управления двигателем постоянного тока, но частота должна быть на порядок выше (15-20 кГц) по двум основным причинам.

При более низких частотах двигатель может издавать ужасный писк, вызывающий раздражение.
Ну и от частоты зависит стабильность работы двигателя. При управлении низкочастотным сигналом с низким коэффициентом заполнения, обороты будут нестабильны и он может даже полностью остановиться. Поэтому, с ростом частоты сигнала ШИМ, растет стабильность среднего выходного напряжения и снижаются пульсации напряжения. Однако, есть предел по частоте, т.к при больших частотах полупроводниковый прибор может не успеть полностью переключиться, и схема управления будет работать с ошибками. Кроме того высокая частота ШИМ сигнала также увеличивает потери на транзисторе. Управляя двигателем на высоких частотах желательно использовать быстродействующий полупроводник с низким сопротивлением проводимости.

Ниже рассмотрим реальную рабочую схему на операционном усилителе

Регулируя величину напряжения на неинвертирующем входе ОУ можно задаватьтребуюмую величину выходного напряжения. Поэтому, эту схему можно использовать в роли регулятора тока или напряжения или в роли регулятора оборотов двигателя постоянного тока.

Схема проста и надежна, состоит из доступных радиоэлементов и при правильной сборке сразу начнет работать. В роли управляющего ключа взят мощный полевой n- канальный транзистор.

Похожие публикации