Сейсмические волны, распространение. Сейсмическая волна Продольные и поперечные сейсмические волны

Руководитель: _______________ ___________________ /________________/

(должность) (подпись) (Ф.И.О.)

Санкт-Петербург

Введение. 3

1. Сейсмические волны и их измерения. 5

2. Шкала магнитуд. Шкала Рихтера. 6

3. Шкала интенсивности. 6

4. Шкала Медведева-Шпонхойера-Карника (MSK-64) 7

5. Процессы, происходящие при сильных землетрясениях. 7

6. Другие виды землетрясений. 8

7. Измерительные приборы.. 9

8. Наиболее разрушительные землетрясения. 9

Приложения. 18

Введение

Землетрясение - это внезапное высвобождение энергии, накопленной в сжатых или растянутых горных породах. Оно проявляется в подземных толчках и колебаниях земной поверхности. Немногие из грозных явлений природы могут сравниваться по разрушительной силе и опасности с землетрясениями. Их летопись насчитывает миллионы жертв, сотни погибших городов. Каждый человек, живущий на Земле, привык считать земную твердь чем-то прочным и надежным. Когда же она начинает сотрясаться, взрываться, оседать, ускользать из-под ног, человека охватывает ужас. Глагол "трястись" абсолютно точно описывает происходящее с земной поверхностью во время землетрясения: она вздымается, колеблется, вибрирует и даже раскалывается. Эти движения продолжаются несколько секунд, самое большее несколько минут, но, тем не менее, они могут повлечь за собой катастрофические последствия. Частота колебаний некоторых сейсмических волн бывает такой, что они становятся слышны человеку, животные же могут воспринимать звук в значительно более широком диапазоне. В различных описаниях звуки, сопровождающие землетрясение, сравниваются с сильным ветром, шумом скорого поезда, отдаленным орудийным раскатам. Рассказы некоторых очевидцев свидетельствуют, что во время землетрясения бывают вспышки света.

Иногда этот яркий свет можно объяснить молниями или замыканиями электроприборов. Но не исключена возможность, что некоторые из этих вспышек

связаны с неизвестными явлениями при движениях земной коры. Вот как очевидец

описывает землетрясение:

"Земля вздрогнула; ее первая судорога длилась почти 10 секунд: треск и скрип оконных рам, звон стекол, грохот падающих лестниц разбудили спящих. Как бумажный разрывался потолок. в темноте все, казалось, падало. Земля глухо гудела. Вздрогнув и пошатываясь, здания наклонялись, по их белым стенам, как молнии, змеились трещины, и стены рассыпались, заваливая улицы и людей среди них тяжелыми грудами острых кусков камня."

Землетрясения представляют собой движения земной поверхности, вызванные

воздействием сейсмических волн (по-гречески "сейсмос" - землетрясение).

Сейсмические волны обычно ощущаются как сильные, интенсивные движения

поверхности. Иногда наблюдаются земные волны в буквальном смысле слова: волны

движутся по земле как по озеру. Они особенно опасны. Они раскалывают

строения, встряхивая их так, что рушатся даже прочные стены. В городских

районах здания вибрируют настолько сильно, что распадаются на части. При этом

часто возникают пожары, так как разрушаются газовые магистрали и происходят

замыкания в электрических цепях.

Если и водопроводная сеть оказывается поврежденной, город сможет сгореть, и

предотвратить это почти невозможно. Бывали случаи, когда от подземных толчков

люди подлетали так высоко, что, падая, разбивались насмерть. К счастью, такие

мощные удары волн случаются редко. Для людей и строений опасны не только сами

по себе колебания земли. Для землетрясений характерно множество сопутствующих

явлений, которые увеличивают число жертв, - это гигантское цунами, крупные

обвалы и снежные лавины, грязевые потоки - сели, оползни. Наиболее широко

известным фактором является возникновение в земле трещин, которые, согласно

некоторым описаниям, поглощали людей, животных, дома и даже целые деревни. Во

время землетрясений, также бывают резкие опускания больших участков, которые

могут сопровождаться мгновенным затоплением. Одним из наиболее разрушительных

последствий землетрясения являются оползни, сели, снежные лавины. В

прибрежных районах к одним из самых страшных явлений, сопутствующих

землетрясениям, относятся цунами. Многие люди впервые задумались над могучим

явлением природы, ученые начали изучать землетрясения.

Что же является причиной землетрясения?

Причиной землетрясения является быстрое смещение участка литосферы (литосферных плит) как целого в момент релаксации (разрядки) упругой деформации напряжённых пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли.

Согласно научной классификации, по глубине возникновения землетрясения делятся на 3 группы: «нормальные» - 33 - 70 км, «промежуточные» - до 300 км, «глубокофокусные» - свыше 300 км. К последней группе относится землетрясение, которое произошло 24 мая 2013 года в Охотском море, тогда сейсмические волны достигли многих уголков России, в том числе и Москвы. Глубина этого землетрясения достигала 600 км.

Сейсмические волны и их измерения

Скольжению пород вдоль разлома вначале препятствует трение. Вследствие этого, энергия, вызывающая движение, накапливается в форме упругих напряжений пород. Когда напряжение достигает критической точки, превышающей силу трения, происходит резкий разрыв пород с их взаимным смещением; накопленная энергия, освобождаясь, вызывает волновые колебания поверхности земли - землетрясения. Землетрясения могут возникать также при смятии пород в складки, когда величина упругого напряжения превосходит предел прочности пород, и они раскалываются, образуя разлом.

Сейсмические волны, порождаемые землетрясениями, распространяются во все стороны от очага подобно звуковым волнам. Точка, в которой начинается подвижка пород, называется фокусом, очагомили гипоцентром, а точка на земной поверхности над очагом - эпицентром землетрясения. Ударные волны распространяются во все стороны от очага, по мере удаления от него их интенсивность уменьшается.

Скорости сейсмических волн могут достигать 8 км/с.

Сейсмические волны делятся на волны сжатия и волны сдвига.

· Волны сжатия, или продольные сейсмические волны, вызывают колебания частиц пород, сквозь которые они проходят, вдоль направления распространения волны, обуславливая чередование участков сжатия и разрежения в породах. Скорость распространения волн сжатия в 1,7 раза больше скорости волн сдвига, поэтому их первыми регистрируют сейсмические станции. Волны сжатия также называют первичными (P-волны). Скорость P-волны равна скорости звука в соответствующей горной породе. При частотах P-волн, больших 15 Гц, эти волны могут быть восприняты на слух как подземный гул и грохот.

· Волны сдвига, или поперечные сейсмические волны, заставляют частицы пород колебаться перпендикулярно направлению распространения волны. Волны сдвига также называют вторичными (S-волны).

Термин «сейсмология» означает изучение землетрясений, но он же означает и изучение внутренних областей Земли с помощью сейсмических волн, которые могут распространяться прямо через тело планеты. Значительная часть полученных сведений определяется тем, сколько времени затрачивают волны, проходя различные расстояния.

Сейсмические волны могут возникнуть при любом возмущении грунта

Сейсмические волны могут возникнуть при любом возмущении грунта, но только землетрясения и ядерные взрывы представляют собой достаточно крупные источники, или очаги, таких волн, чтобы эти волны можно было уловить на противоположной стороне Земли. Возникающие волны относятся, как показано, к четырем типам. Их можно разделить на объемные и поверхностные: объемные волны проходят внутри Земли, а поверхностные волны-только близ поверхности.

В свою очередь объемные волны делятся на два вида. Продольные волны, или Р-волны9-это просто звуковые волны, распространяющиеся внутри Земли; частицы вещества, через которое проходят эти волны, колеблются взад и вперед в направлении движения волны. При прохождении поперечных волн, или S-волн, частицы колеблются перпендикулярно направлению распространения волны.

Волна-это распространение некоторой деформации в том или ином веществе

Волна-это распространение некоторой деформации в том или ином веществе. Если в каком-либо небольшом объеме упругой среды каким-то образом происходит изменение формы или объема, т.е. если происходит деформация вещества, заключенного в этом объеме, то развивается напряжение, которое стремится вернуть вещество к невозмущенному состоянию. Отношение величины этого напряжения к величине деформации называется модулем упругости материала. Скорость распространения упругой волны возрастает с повышением этого модуля, но убывает с увеличением плотности материала.

Материал можно деформировать по-разному, поэтому любое вещество характеризуется более чем одним модулем упругости и более чем одной скоростью распространения волн. Выражения для скоростей двух сейсмических объемных волн имеют следующий вид:
.Четыре типа сейсмических волн:

  1. а-продольная волна. Частицы колеблются вдоль направления распространения волн;
  2. б-поперечная волна. Частицы движутся в перпендикулярном направлении;
  3. в-волна Рэлея. Колебания частиц имеют более сложный характер, но у поверхности каждая частица описывает эллипс с обратным движением в его верхней части;
  4. г-волна Лява. Движение частиц — поперечное и горизонтальное. Как в волнах Рэлея, так и в волнах Лява движение частиц затухает с увеличением глубины от поверхности.

необходимого, чтобы сжать материал до меньшего объема; ц-модуль упругости второго рода, или модуль сдвига, определяющий величину напряжения, необходимого, чтобы изменить форму тела, состоящего из данного материала. Анализ показывает, что продольные волны и сжимают вещество, и изменяют его форму, и поэтомуVpзависит от К и от \i. С другой стороны, поперечные волны только изменяют форму вещества.
Анализ формул показывает, что Vp всегда больше, чем Vs, поэтому Р-волны какого-либо землетрясения всегда приходят к сейсмографам регистрирующей сейсмической станции раньше, чем S-волны. Еще до того, как стала известна природа этих волн, их приход называли первичной (primary) и вторичной (secondary) волной (отсюда и обозначения: Р- и S-волны). Однако их можно считать волнами сжатия (pressure) и волнами сдвига (shear). Второй вывод из анализа формул состоит в том, что поперечные волны не могут распространяться в таком веществе (например, в жидкости), которое не может сопротивляться изменению формы и, следовательно, не обладает жесткостью (т. е. ц = 0). Этот вывод имеет важное значение, так как мы используем его для доказательства, что часть земного ядра находится в жидком состоянии.

Другие два типа волн называются поверхностными волнами

Другие два типа волн, показанные, называются поверхностными волнами, так как они могут возникнуть только тогда, когда имеется какая-то поверхность; обычно это поверхность Земли. При удалении от поверхности амплитуда таких волн резко уменьшается. По этой причине, а также потому, что они распространяются медленнее, чем Р- и 3-волны, поверхностные волны играли небольшую роль на ранней стадии развития сейсмологии. .

Объемные волны и поверхностные волны

Сейсмические волны - волны, переносящие энергию упругих (механических) колебаний в горных породах. Источником сейсмической волны может быть землетрясение, взрыв, вибрация или удар.

Сейсмические волны изучаются в сейсмологии и разведочной геофизике . Для записи колебаний, вызываемых сейсмическими волнами, применяются автономные сейсморегистраторы или приёмники , подключённые к сейсмостанциям.

Скорость распространения волн зависит от плотности и упругости среды. Она имеет тенденцию к росту по мере углубления, в верхней части земной коры составляет 2-8 км/с, а при погружении до уровня мантии - 13 км/с.

Частота волн низкая, она колеблется от 2 до 50 герц.

В сейсмологии изучение сейсмических волн представляет самостоятельный фундаментальный интерес, а в сейсморазведке волны от искусственных источников направляются на интересующие геологические границы для их прослеживания.

Типы сейсмических волн

Есть два главных типа: объёмные волны и поверхностные волны. Кроме описанных ниже есть и другие, менее значимые типы волн, которые вряд ли можно встретить на Земле, но они имеют важное значение в астросейсмологии .

Объёмные волны

Объёмные волны проходят через недра Земли. Путь волн преломляется различной плотностью и жёсткостью подземных пород.

P-волны

P-волны (первичные волны) - продольные, или компрессионные волны. Похожи на звуковые волны - частицы испытывают колебания вперёд и назад вдоль линии распространения волны . Обычно их скорость в два раза быстрее S-волн, проходить они могут через любые материалы. В воздухе они принимают форму звуковых волн, и, соответственно, их скорость становится равной скорости звука. Стандартная скорость P-волн - 330 м/с в воздухе, 1 450 м/с в воде и 5 000 м/с в граните. На нижней стороне границы Мохоровичича скорость P-волн приблизительно равна 8100 м/с, а в районе границы мантия-ядро достигает 13600 м/с .

S-волны

S-волны (вторичные волны) - поперечные волны. Частицы среды испытывают колебания перпендикулярно линии распространения волны . Жидкости не пропускают S-волны , это является одной из причин того, что землетрясение на корабле в море ощущается в виде вертикального толчка, словно корабль натолкнулся на подводный объект . На нижней стороне границы Мохоровичича скорость S-волн приблизительно равна 4400 м/с, а в районе границы мантия-ядро достигает 7300 м/с .

Поверхностные волны

Поверхностные волны несколько похожи на волны воды, но в отличие от них они путешествуют по земной поверхности. Их обычная скорость значительно ниже скорости волн тела. Из-за своей низкой частоты, времени действия и большой амплитуды они являются самыми разрушительными изо всех типов сейсмических волн.

Поверхностные волны бывают двух типов: волны Рэлея и волны Лява . В волнах Лява частицы колеблются в горизонтальной плоскости перпендикулярно направлению распространения волны. В волнах Рэлея частицы движутся по эллипсам вперед-вверх-назад-вниз относительно направления распространения волны. Поверхностная волна распространяется медленнее S-волны, при этом волна Лява быстрее волны Рэлея .

P- и S-волны в мантии и ядре

Когда происходит землетрясение, сейсмографы вблизи эпицентра записывают S- и P-волны. Но на больших расстояниях обнаружить высокие частоты первой S-волны невозможно. Поскольку поперечные волны не могут проходить через жидкости, на основании этого явления Ричард Диксон Олдхэм выдвинул предположение, что Земля имеет жидкое внешнее ядро. По этому виду исследования в дальнейшем было выдвинуто предположение, что у Луны твёрдое ядро, но недавние геофизические исследования показывают, что оно ещё расплавлено.

Использование P- и S- волн для локации землетрясения

В случае локальных или близлежащих землетрясений разница прибытия P- и S- волн может использоваться для обнаружения дистанции от события. В случае глобальных землетрясений четыре или более наблюдательных станций, синхронизированных по времени, записывают время прибытия P-волн. На основе этих данных можно вычислить эпицентр в любой точке планеты. Для определения гипоцентра используется больший объём данных (десятки или сотни записей прибытия P-волн с сейсмических станций).

Самый простой способ узнать место землетрясения в радиусе 200 км - это высчитать разницу в прибытии P- и S- волн в секундах и умножить её на 8. Но на телесейсмических [неизвестный термин ] дистанциях этот способ не подходит, потому что высока вероятность того, что сейсмические волны углубились до мантии Земли и преломились, изменив свою скорость .

Амплитуда сейсмической волны

Амплитудой сейсмической упругой волны является максимальное значение смещения колеблющейся частицы горной породы относительно равновесного состояния. В зависимости от типа приёмника сейсмических колебаний амплитуда может быть равна максимальной скорости или ускорению колеблющихся частиц. После преобразования в приёмниках сейсмический сигнал становится электрическим, поэтому амплитуда выражается уже в мВ или в единицах АЦП . Эталона сейсмической волны в настоящее время не существует, поэтому вопрос об единице измерения амплитуды остаётся открытым и она полагается безразмерной.

В зависимости от полярности сейсмического импульса амплитуда волны может иметь положительное или отрицательное значение. Импульс с положительной амплитудой имеет полярность (порядок следования фаз) такой же как и у волны, создаваемой непосредственно источником, а импульс с отрицательной амплитудой - противоположный.

Министерство образования и науки

Российской Федерации

Крымский федеральный университет имени В.И. Вернадского

Таврическая академия

Географический факультет

Кафедра Землеведения и геоморфологии

А.А. ПАСЫНКОВ

СЕЙСМИЧЕСКАЯ ГЕОМОРФОЛОГИИЯ

(Учебное пособие)

Симферополь – 2015

Пасынков Анатолий Андреевич

(Учебное пособие)

Симферополь: Крымский федеральный университет

Имени В.И.Вернадского, Таврическая академия. 2015. – 100 с.

Настоящее учебное пособие

Курс лекций рассчитан на подготовку академических магистров по направлению « », студентов-геоморфологов географических факультетов, преподавателей, специалистов.

© Крымский федеральный университет имени В.И. Вернадского, Таврическая академия, 2015

СОДЕРЖАНИЕ
№ темы раздел стр.
4
Тема 1 . ПОНЯТИЕ О СЕЙСМОЛОГИИ

Сейсмология (от др.-греч. σεισμός - (земле)трясение и λόγος - слово, речь) - наука о распространении сейсмических волн в недрах Земли. Только с помощью сейсмологии удалось составить картину глубинного строения земного шара (кора, мантия, внешнее и внутреннее ядро). Также сейсмология занимается землетрясениями, движениями платформ, мониторингом разработок рудных месторождений и пр.

Сейсмология – это наука, занимающаяся измерениями и анализом всех движений, которые регистрируются сейсмографами на поверхности твёрдой Земли. Это раздел геофизики, изучающий землетрясения, их причины, последствия и меры защиты искусственных сооружений.

Основной носитель информации - сейсмические волны, интерпретация записи которых позволяет изучать наряду с землетрясениями строение Земли, а также выявлять месторождения полезных ископаемых и фиксировать взрывы (например, ядерные).

Основная задача сейсмологии состоит в изучении внутреннего строения Земли. Поэтому очень важно знать, как отклонения от однородности влияют на распространение сейсмических волн. По существу все прямые данные о внутреннем строении Земли получены из наблюдений за распространением упругих волн, возбуждаемых при землетрясениях.

Под сейсмичностью подразумевается географическое распределение землетрясений, их связь со строением земной поверхности и распределение по магнитудам (или энергиям).

Землетрясе́ния - подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами) или искусственными процессами (взрывы, заполнение водохранилищ, обрушением подземных полостей горных выработок). Небольшие толчки могут вызывать также подъём лавы при вулканических извержениях.

Ежегодно на всей Земле происходит около миллиона землетрясений, но большинство из них так незначительны, что они остаются незамеченными. Действительно сильные землетрясения, способные вызвать обширные разрушения, случаются на планете примерно раз в две недели. К счастью, большая их часть приходится на дно океанов, и поэтому не сопровождается катастрофическими последствиями (если землетрясение под океаном обходится без цунами).

Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Разрушения зданий и сооружений вызываются колебаниями почвы или гигантскими приливными волнами (цунами), возникающими при сейсмических смещениях на морском дне.

Причины землетрясений.

Причиной землетрясения является быстрое смещение участка земной коры как целого в момент пластической (хрупкой) деформации упруго напряженных пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли (рис.1). Само смещение происходит под действием упругих сил в ходе процесса разрядки - уменьшения упругих деформаций в объёме всего участка плиты и смещения к положению равновесия. Землетрясение представляет собой быстрый (в геологических масштабах) переход потенциальной энергии, накопленной в упруго-деформированных (сжимаемых, сдвигаемых или растягиваемых) горных породах земных недр, в энергию колебаний этих пород (сейсмические волны), в энергию изменения структуры пород в очаге землетрясения. Этот переход происходит в момент превышения предела прочности пород в очаге землетрясения.

Рис. 1 Современные эпицентры землетрясений и вулканов на Земле.

Предел прочности пород земной коры превышается в результате роста суммы сил, действующих на неё:

Силы вязкого трения мантийных конвекционных потоков о земную кору;

Архимедовой силы, действующей на легкую кору со стороны более тяжелой пластичной мантии;

Лунно-солнечных приливов;

Изменяющегося атмосферного давления.

В момент землетрясения потенциальная энергия упругой деформации в очаге землетрясения быстро (почти мгновенно) снижается до минимальной остаточной (чуть ли не до нуля). А в окрестностях очага за счёт сдвига во время землетрясения плиты как целого упругие деформации несколько увеличиваются. Поэтому и случаются часто в окрестностях главного повторные землетрясения - афтершоки. Точно так же малые «предварительные» землетрясения - форшоки - могут спровоцировать большое в окрестностях первоначального малого землетрясения. Большое землетрясение (с большим сдвигом плиты) может вызвать последующие индуцированные землетрясения даже на удаленных краях плиты.

Глубокофокусные землетрясения, очаги которых располагаются на глубинах до 700 км от поверхности, происходят на конвергентных границах литосферных плит и связаны с субдукцией.

Сейсмические волны и их измерение

Скольжению пород вдоль разлома вначале препятствует трение. Вследствие этого, энергия, вызывающая движение, накапливается в форме упругих напряжений пород. Когда напряжение достигает критической точки, превышающей силу трения, происходит резкий разрыв пород с их взаимным смещением; накопленная энергия, освобождаясь, вызывает волновые колебания поверхности земли - землетрясения. Землетрясения могут возникать также при смятии пород в складки, когда величина упругого напряжения превосходит предел прочности пород и они раскалываются, образуя разлом.

Сейсмические волны, порождаемые землетрясениями, распространяются во все стороны от очага подобно звуковым волнам. Точка, в которой начинается подвижка пород называется фокусом, очагом или гипоцентром, а точка на земной поверхности над очагом - эпицентром землетрясения . Ударные волны распространяются во все стороны от очага, по мере удаления от него их интенсивность уменьшается. Скорости сейсмических волн могут достигать 8 км/с.

Типы сейсмических волн.

Сейсмические волны делятся на волны сжатия и волны сдвига.

Волны сжатия, или продольные сейсмические волны , вызывают колебания частиц пород, сквозь которые они проходят, вдоль направления распространения волны, обуславливая чередование участков сжатия и разрежения в породах. Скорость распространения волн сжатия в 1,7 раза больше скорости волн сдвига, поэтому их первыми регистрируют сейсмические станции. Волны сжатия также называют первичными (P-волны). Скорость P-волны равна скорости звука в соответствующей горной породе. При частотах P-волн, больших 15 Гц, эти волны могут быть восприняты на слух как подземный гул и грохот.

Волны сдвига, или поперечные сейсмические волны, заставляют частицы пород колебаться перпендикулярно направлению распространения волны. Волны сдвига также называют вторичными (S-волны).

Существует ещё третий тип упругих волн - длинные или поверхностные волны(L-волны). Именно они вызывают самые сильные разрушения.

Сейсмограф

Впервые инструментальные наблюдения появились в Китае, где в 132 Чан Хен изобрел сейсмоскоп, представлявший собой искусно сделанный сосуд. На внешней стороне сосуда, с размещенным внутри маятником, по кругу были выгравированы головы драконов, держащих в пасти шарики. При качании маятника от землетрясения один или несколько шариков выпадали в открытые рты лягушек, размещенных у основания сосудов таким образом, чтобы лягушки могли их проглотить (рис.2).

Рис. 2 . Сейсмоскоп Чан Хена.

Современный сейсмограф представляет собой комплект приборов, регистрирующих колебания грунта при землетрясении и преобразующих их в электрический сигнал, записываемый на сейсмограммах в аналоговой и цифровой форме. Однако, по-прежнему, основным чувствительным элементом служит маятник с грузом (рис.3).

Рис. 3 Сейсмограф.

Сейсмическая служба

Постоянные наблюдения за землетрясениями осуществляются сейсмической службой. Современная мировая сеть насчитывает св. 2000 стационарных сейсмических станций, данные которых систематически публикуются в сейсмологических бюллетенях и каталогах. Кроме стационарных станций используются экспедиционные сейсмографы, в т. ч. устанавливаемые на дне океанов. Экспедиционные сейсмографы засылались также на Луну (где 5 сейсмографов ежегодно регистрируют до 3000 лунотрясений), а также на Марс и Венеру.

Виды землетрясений

Тектонические

Тектонические землетрясения возникают вследствие внезапного снятия напряжения, например, при подвижках по разлому в земной коре (исследования последних лет показывают, что причиной глубоких землетрясений могут быть и фазовые переходы в мантии Земли, происходящие при определенных температурах и давлениях). горизонтальное смещение – 6 м. Максимальная зарегистрированная величина сейсмогенных смещений по разлому 15 м.

Рис. 4. Механизм тектонического землетрясения

Рис.5 Последствия тектонических землетрясения

Иногда глубинные разломы выходят на поверхность. Во время катастрофического землетрясения в Сан-Франциско 18 апреля 1906 общая протяженность поверхностных разрывов в зоне разлома Сан-Андреас составила более 430 км.

Рис.6 Разлом Сан-Андреас

Вулканические

Вулканические землетрясения - разновидность землетрясений, при которых землетрясение возникает в результате высокого напряжения в недрах вулкана. Причина таких землетрясений - лава, вулканический газ. Землетрясения этого типа слабы, но продолжаются долго, многократно - недели и месяцы. Тем не менее, опасности для людей этого вида землетрясение не представляет.

Рис. 5. Вулканизм

Техногенные

В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническая активность - увеличивается частота землетрясений и их магнитуда. Это связано с тем, что масса воды, накопленная в водохранилищах, своим весом увеличивает давление в горных породах, а просачивающаяся вода понижает предел прочности горных пород. Аналогичные явления происходят при выемке больших количеств породы из шахт, карьеров, при строительстве крупных городов из привозных материалов.

Рис. Последствия техногенного воздействия (Техногенные землетрясения)

Обвальные

Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и имеют небольшую силу.

Рис. Последствия Обвального землетрясения

Сейсмические волны - волны, переносящие энергию упругих (механических) колебаний в горных породах. Источником сейсмической волны может быть землетрясение, взрыв, вибрация или удар. Сейсмические волны изучаются в сейсмологии и разведочной геофизике . Для записи колебаний, вызываемых сейсмическими волнами, применяются автономные сейсморегистраторы или приёмники , подключённые к сейсмостанциям. Скорость распространения волн зависит от плотности и упругости среды. Скорость имеет тенденцию к росту по мере углубления, в земной коре она составляет 2-8 км/с, а при углублении до мантии - 13 км/с. В сейсмологии изучение сейсмических волн представляет самостоятельный фундаментальный интерес, а в сейсморазведке волны от искусственных источников направляются на интересующие геологические границы для их прослеживания.

Энциклопедичный YouTube

    1 / 3

    Сейсмические волны

    What Is Earthquake | Seismic Waves | P and S Waves

    Love Wave (seismic)

    Субтитры

    В этом видео я хочу немного обсудить сейсмические волны. Запишем тему. Во-первых, они очень интересны сами по себе и, во-вторых, очень важны для понимания строения Земли. Вы уже видели мое видео о слоях Земли, и именно благодаря сейсмическим волнам мы сделали вывод, из каких слоев состоит наша планета. И, хотя обычно сейсмические волны ассоциируются с землетрясениями, на самом деле это любые волны, путешествующие по земле. Они могут возникнуть от землетрясения, сильного взрыва, чего угодно, что способно послать много энергии прямо в землю и камень. Итак, существуют два основных типа сейсмических волн. И мы больше сосредоточимся на одном из них. Первый - поверхностные волны. Запишем. Второй - объемные волны. Поверхностные волны - это просто волны, распространяющиеся по поверхности чего-либо. В нашем случае по поверхности земли. Здесь, на иллюстрации, видно, как выглядят поверхностные волны. Они похожи на рябь, которую можно увидеть на поверхности воды. Поверхностные волны бывают двух типов: волны Рэлея и волны Лява. Я не буду распространяться, но здесь видно, что волны Рэлея движутся вверх и вниз. Вот здесь земля двигается вверх-вниз. Тут движется вниз. Тут - вверх. И тут - снова вниз. Похоже на бегущую по земле волну. Волны Лява, в свою очередь, двигаются в стороны. То есть, вот здесь волна не движется вверх-вниз, а, если посмотреть по направлению волны, она движется влево. Здесь движется вправо. Здесь - влево. Здесь - снова вправо. В обоих случаях, движение волны перпендикулярно направлению ее перемещения. Иногда такие волны называют поперечными. И они, как я уже говорил, похожи на волны в воде. Намного более интересны объемные волны, потому что, во-первых, это самые быстрые волны. И, к тому же, именно эти волны используются для изучения структуры земли. Объемные волны бывают двух типов. Есть P-волны, или первичные волны. И S-волны, или вторичные. Их можно увидеть вот здесь. Такие волны - это энергия, перемещающаяся внутри тела. А не просто по его поверхности. Итак, на данном рисунке, который я скачал из Википедии, видно, как по большому камню бьют молотком. И когда молоток попадает по камню… Давайте я перерисую покрупнее. Здесь у меня будет камень, и я бью его молотком. Он сожмет камень там, куда он попал. Тогда энергия от удара толкнет молекулы, которые врежутся в молекулы по соседству. И эти молекулы врежутся в молекулы за ними, а те, в свою очередь, в молекулы рядом. Получится, что эта сжатая часть камня движется волной. Вот это - сжатые молекулы, они врежутся в молекулы рядом и тогда здесь камень станет плотнее. Первые молекулы, те, которые начали все движение, вернутся на место. Поэтому сжатие сдвинулось, и дальше сдвинется еще. Получается волна сжатия. Вы бьете молотком сюда и получаете меняющуюся плотность, которая движется в направлении волны. В нашем случае молекулы двигаются вперед и назад вдоль одной оси. Параллельно направлению волны. Это - Р-волны. Р-волны могут распространяться в воздухе. По существу, звуковые волны - это волны сжатия. Они могут перемещаться как в жидкостях, так и в твердых веществах. И, в зависимости от среды, они двигаются с разными скоростями. В воздухе они двигаются со скоростью 330 м/с, что не так уж и медленно для повседневной жизни. В жидкости они двигаются на скорости 1 500 м/с. А в граните, из которого состоит большая часть поверхности Земли, они двигаются на скорости 5 000 м/с. Давайте я это запишу. 5 000 метров, или 5 км/с в граните. А S-волны, сейчас я нарисую, потому что эта слишком маленькая. Если ударить молотком сюда, сила удара временно сдвинет камень в сторону. Он немного деформируется и потянет за собой соседний участок камня. Затем этот камень сверху будет утянут вниз, а камень, по которому изначально ударили, вернется вверх. И приблизительно через миллисекунду слой камня сверху немного деформируется вправо. И дальше, с течением времени, деформация будет двигаться вверх. Заметьте, что в этом случае волна тоже движется вверх. Но движение материала теперь не параллельно оси, как в Р-волнах, а перпендикулярно. Эти перпендикулярные волны также называют поперечными колебаниями. Движение частиц перпендикулярно оси движения волны. Это и есть S-волны. Они двигаются чуть медленнее Р-волн. Поэтому, если вдруг случится землетрясение, сначала вы почувствуете Р-волны. А затем, на приблизительно 60% скорости Р-волн придут S-волны. Итак, для понимая структуры Земли важно помнить, что S-волны могут двигаться только в твердых веществах. Запишем это. Вы могли бы сказать, что видели поперечные волны на воде. Но там были поверхностные волны. А мы обсуждаем объемные волны. Волны, которые проходят внутри объема воды. Чтобы было проще это представить, я нарисую немного воды, скажем, вот здесь будет бассейн. В разрезе. Вот как-то так. Да, мог бы и получше нарисовать. Итак, здесь будет бассейн в разрезе, и я надеюсь, что вы поймете, что в нем происходит. И если я сожму часть воды, например, ударив по ней чем-нибудь очень большим, чтобы вода быстро сжалась. Р-волна сможет двигаться, потому что молекулы воды врежутся в молекулы по соседству, которые врежутся в молекулы за ними. И это сжатие, эта Р-волна, будет двигаться в направлении от моего удара. Отсюда видно, что Р-волна может двигаться как в жидкостях, так и, например, в воздухе. Хорошо. И помните, что мы говорим о подводных волнах. Не о поверхностях. Наши волны движутся в объеме воды. Предположим, что мы взяли молоток и ударили по данному объему воды со стороны. И от этого возникнет только волна сжатия в эту сторону. И больше ничего. Поперечной волны не возникнет, потому что у волны нет той эластичности которая позволяет ее частям колебаться из стороны в сторону. Для S-волны нужна такая эластичность, которая бывает только в твердых телах. В дальнейшем мы будем использовать свойства Р-волн, которые могут двигаться в воздухе, жидкости и твердых телах, и свойства S-волн, чтобы узнать, из чего состоит земля. Subtitles by the Amara.org community

Типы сейсмических волн

Есть два главных типа: объёмные волны и поверхностные волны. Кроме описанных ниже есть и другие, менее значимые типы волн, которые вряд ли можно встретить на Земле, но они имеют важное значение в астросейсмологии .

Объёмные волны

Объёмные волны проходят через недра Земли. Путь волн преломляется различной плотностью и жёсткостью подземных пород.

P-волны

P-волны (первичные волны) - продольные, или компрессионные волны. Обычно их скорость в два раза быстрее S-волн, проходить они могут через любые материалы. В воздухе они принимают форму звуковых волн, и, соответственно, их скорость становится равной скорости звука. Стандартная скорость P-волн - 330 м/с в воздухе, 1 450 м/с в воде и 5 000 м/с в граните.

S-волны

S-волны (вторичные волны) - поперечные волны. Они показывают, что земля смещается перпендикулярно к направлению распространения. В случае горизонтально поляризованных S-волн земля движется то в одну сторону, то в другую попеременно. Волны этого типа могут действовать только в твёрдых телах.

Поверхностные волны

Поверхностные волны несколько похожи на волны воды, но в отличие от них они путешествуют по земной поверхности. Их обычная скорость значительно ниже скорости волн тела. Из-за своей низкой частоты, времени действия и большой амплитуды они являются самыми разрушительными изо всех типов сейсмических волн. Они бывают двух типов: волны Рэлея и волны Лява .

P- и S-волны в мантии и ядре

Когда происходит землетрясение, сейсмографы вблизи эпицентра записывают S- и P-волны. Но на больших расстояниях обнаружить высокие частоты первой S-волны невозможно. Поскольку поперечные волны не могут проходить через жидкости, на основании этого явления Ричард Диксон Олдхэм выдвинул предположение, что Земля имеет жидкое внешнее ядро. По этому виду исследования в дальнейшем было выдвинуто предположение, что у Луны твёрдое ядро, но недавние геофизические исследования показывают, что оно ещё расплавлено.

Использование P- и S- волн для локации землетрясения

В случае локальных или близлежащих землетрясений разница прибытия P- и S- волн может использоваться для обнаружения дистанции от события. В случае глобальных землетрясений четыре или более наблюдательных станций, синхронизированных по времени, записывают время прибытия P-волн. На основе этих данных можно вычислить.

В зависимости от полярности сейсмического импульса амплитуда волны может иметь положительное или отрицательное значение. Импульс с положительной амплитудой имеет полярность (порядок следования фаз) такой же как и у волны, создаваемой непосредственно источником, а импульс с отрицательной амплитудой - противоположный.

Амплитуда сейсмической волны зависит от плотности энергии в пространстве между фронтом и тылом, поэтому из-за перераспределения неизменной упругой энергии на всё больший объём, амплитуда волны уменьшается с удалением фронта волны от источника. Кроме того, на значение амплитуды влияет акустическая жёсткость (волновой импеданс), определяющий степень уменьшения амплитуды. В акустически жёстких средах амплитуда упругой волны падает, в акустически мягких - возрастает. Также амплитуда упругой волны прямо зависит от кинетической энергии, которые источник волны сообщает среде .

Похожие публикации