Самолет и вертолет, их устройство и оборудование. Принцип полета вертолета и основные конструктивные отличия его от самолета За счет чего вертолет движется вперед

Инструкция

Еще Леонардо да Винчи в своих гениальных заметках указывал, что для совершения полета нужно не взмахивать крыльями, а сообщить им горизонтальную скорость и позволить двигаться относительно воздуха. При взаимодействии плоского крыла с воздушными массами должна будет возникнуть подъемная сила, которая превысит вес летательного аппарата, считал легендарный изобретатель. Но пришлось ждать несколько столетий, прежде чем этот принцип был реализован.

Экспериментаторы довольно успешно проводили опыты с плоскими крыльями. Расположив такую пластину под небольшим углом к потоку воздуха, можно было наблюдать, как возникает подъемная сила. Но появляется также и сила сопротивления, которая стремится сдуть плоское крыло назад. Исследователи назвали угол, под которым поток воздуха действует на плоскость крыла, углом атаки. Чем он больше, тем большие значения принимают подъемная сила и сила сопротивления.

На заре авиации исследователи обнаружили, что наиболее эффективный угол атаки для крыла плоской формы составляет 2-9 градусов. При меньшем значении не получится создать необходимую подъемную силу. А если угол атаки будет чрезмерно большим, возникнет ненужное сопротивление движению – крыло попросту превратится в парус. Отношение подъемной силы к силе сопротивления ученые назвали аэродинамическим качеством крыла.

Наблюдения за птицами показали, что крылья у них совсем не плоские. Оказалось, что высокие аэродинамические качества мог обеспечить только выпуклый профиль. Набегая на крыло, имеющее выпуклую верхнюю часть и плоскую нижнюю, поток воздуха делится на две части. Верхний поток имеет более значительную скорость, поскольку ему приходится проходить большее расстояние. Возникает разница давлений, которая создает силу, направленную вверх. Увеличить ее можно, отрегулировав угол атаки.

Современные самолеты имеют значительный вес. Но возникающая в момент взлета подъемная сила позволяет тяжеловесной конструкции оторваться от поверхности земли. Секрет кроется в правильно подобранном профиле крыльев, в точном расчете их площади и угла атаки. Будь крыло самолета абсолютно плоским, совершить полет на аппарате тяжелее воздуха было бы невозможно.

Подъемная сила используется не только при взлете и удержании самолета в воздухе. Она нужна также для управления воздушным судном в полете. Для этого крылья делят на ряд подвижных элементов. Такие закрылки при совершении маневров меняют свое положение относительно неподвижной части крыла. У самолета имеется горизонтальное оперение, выполняющее функцию руля высоты, и вертикальное оперение, которое служит рулем направления. Подобные элементы конструкции гарантируют летательному аппарату устойчивость в воздухе.

Подъемная сила и тяга для поступательного движения у вертолета создается с помощью несущего винта. В работе несущего винта вертолета и воздушного винта самолета есть много общего, но имеются и отличия. Сравнивая их работу, можно заметить, что при одинаковой мощности двигателя тяга несущего винта вертолета всегда больше, благодаря тому что74 диаметр несущего винта вертолета во много раз больше диаметра воздушного винта самолета. Тяга несущего винта в значительной степени зависит от его диаметра и числа оборотов.

Так, при увеличении диаметра винта вдвое тяга его увеличивается приблизительно в 16 раз; при увеличении числа оборотов вдвое - примерно в 4 раза.Несущий винт вертолета обладает исключительно важным свойством - способностью создавать подъемную силу в режиме самовращения (авторотации) в случае остановки двигателя, что позволяет вертолету совершать безопасный планирующий или парашютирующий (вертикальный) спуск и посадку. При висении и при вертикальном подъеме несущий винт (ротор) вертолета работает подобно воздушному винту. При поступательном полете ось его вращения наклоняется вперед и он работает в режиме косой обдувки

(рис. 155)
а-режим косой обдувки, б-пропеллерный режим

Когда лопасти вращаются, подъемная сила заставляет их подниматься, в то время как центробежная сила препятствует их чрезмерному закидыванию вверх, поэтому диск ротора принимает коническую форму. Скорость движения лопасти относительно воздуха неодинакова. Она меньше у оси вращения и больше у конца лопасти и, кроме того, меняется в зависимости от положения лопасти по отношению к направлению полета. Так, при вращении винта скорость лопасти, движущейся вперед, слагается из скоростей от ее вращения и поступательного движения вертолета. Для лопасти же, движущейся назад, скорость будет определяться разностью между скоростью от вращения винта и поступательного движения всей машины. Из-за меньшей скорости у лопасти, движущейся назад, будет меньше и подъемная сила. Чтобы этого не произошло, увеличивают ее угол атаки для сохранения равновесия.

При остановке мотора вертолет становится автожиром. В этом случае ротор вращается без подвода мощности в результате действия аэродинамических сил. Последние обеспечивают необходимую тягу ротора и поддерживают его вращение. Но это превращение зависит от многих факторов. Основной из них - направление обдувки ротора воздушным потоком. При моторном полете воздушный поток набегает на ротор вертолета сверху, в режиме авторотации - снизу. Для обеспечения авторотации необходима определенная скорость потока (прямого или косого), т. е. вертолет должен перемещаться относительно потока. Так, для безопасной авторотирующей посадки с режима висения аппарат должен иметь запас высоты.

По числу несущих винтов вертолеты принято классифицировать на одновинтовые, двухвинтовые и многовинтовые. Наиболее распространена одновинтовая схема. Кроме несущего, одновинтовой вертолет обычно имеет хвостовой винт. Основное назначение хвостового винта состоит в том, что он гасит реактивный момент, который стремится развернуть вертолет в полете в сторону, противоположную вращению несущего винта. Чтобы понять это явление, представим себе человека, плывущего на плоту

(рис. 156)

При попытке развернуть плот он стремится повернуться в сторону, противоположную направлению движения весла. Для того чтобы вертолет в полете не вращался, необходимо приложить к нему такой же момент, как и к несущему винту, но противоположного направления. Такой момент относительно центра тяжести вертолета и создает хвостовой винт. Момент равен произведению силы на плечо, поэтому хвостовой винт стараются расположить на хвосте так, чтобы увеличить плечо приложения силы, развиваемой этим винтом.

Вторая функция хвостового винта - путевое управление вертолетом. Это достигается путем изменения установочных углов лопастей хвостового винта, приводимого во вращение из кабины пилота с помощью ножных педалей. С изменением углов установки меняется тяга рулевого винта и нарушается равновесие реактивного момента и момента тяги хвостового винта, действующих на вертолет, что позволяет поворачивать машину в нужном направлении. Двухвинтовые вертолеты подразделяются на несколько подгрупп. К ним относятся вертолеты соосной схемы

(рис. 157, а)

При которой на одной оси расположены один над другим два несущих винта, вращающихся в противоположные стороны; вертолеты продольной схемы (рис. 157, б) с расположением несущих винтов на концах фюзеляжа; вертолеты поперечной схемы (рис. 157, в) с расположением двух несущих винтов по бокам фюзеляжа.При Двувинтовой схеме вертолета реактивные моменты одинаковых несущих винтов взаимно уравновешиваются, потому что винты вращаются в противоположные стороны с одинаковой скоростью (поэтому на таких вертолетах нет хвостовых винтов). Вертолеты многовинтовой схемы могут иметь три, четыре и более несущих винтов.

Они обладают большой грузоподъемностью.Однако подобные вертолеты строят очень редко из-за сложности системы управления и устройства трансмиссии. Горизонтальный полет является основным режимом полета вертолета, так как он обычно занимает наибольшую часть времени полета. Необходимая тяга для поступательного горизонтального или наклонного движения вертолета создается наклоном плоскости вращения винта. При этом соответственно наклоняется и равнодействующая аэродинамических сил R на винте. В горизонтальном полете вертикальная составляющая силы R дает подъемную силу Y, уравновешивающую силу тяжести G, а горизонтальная составляющая - тягу P для движения по горизонту, уравновешивающую лобовое сопротивление X вертолета

(рис. 158)
А-плоскость вращения винта при висении, Б- при горизонтальном полёте


МИ-1. Первый серийный вертолет в СССР.

А действительно интересно, ? Как этот удивительный (без преувеличения) летательный аппарат не только держится в воздухе, но и красиво летает. Еще как красиво! Я неоднократно был свидетелем пилотажа серийного боевого вертолета МИ-24 над аэродромом города Бжег в Польше. Вертолет уже заслуженный ветеран, но грозная боевая машина, отлично зарекомендовавшая себя в Афганистане, и летает так, что дух захватывает, и взгляд оторвать от этого действа невозможно.

Так что же позволяет ей это делать? Ведь вроде бы несуразный по сравнению с самолетом летательный аппарат. Рискуя в который раз повторить самого себя скажу, что на самом деле принцип полета вертолета достаточно прост. И кое-что для его объяснения мы уже знаем.

Слышали, наверное, расхожее выражение «винтокрылая машина»? Оно достаточно правильное. Самолет держит в воздухе крыло, а у вертолета эти функции выполняет винт большого диаметра. Его называют несущим винтом. Каждая лопасть несущего винта представляет собой, по сути дела, крыло, имеющее аэродинамический профиль, и движущееся при вращении винта в воздушном потоке. Вот, пожалуй, принципиально и все:-). Что при этом происходит с крылом мы с Вами уже разобрались и . Возникает аэродинамическая сила, приложенная к каждой лопасти и, как их сумма, общая сила приложенная к винту и через него ко всему вертолету. Сила эта всегда перпендикулярна плоскости вращения винта.

Силы, действующие на вертолет.

Если она направлена вверх и больше веса вертолета, то он поднимается вертикально, если она равна весу, то он зависает в воздухе. Просто, неправда ли? Но теперь Вы вправе спросить, а как же вертолет двигается вперед? Ведь никакого горизонтального винта, как, например у винтового самолета у него нет и реактивного двигателя тоже. Что же создает ему тягу?

Как всегда все элементарно:-). Эту роль выполняет все тот же несущий винт. Если плоскость вращения винта наклонить, то вместе с ней наклонится и суммарная аэродинамическая сила. И теперь ее можно будет разложить на две составляющие: вертикальную, которая поднимает вертолет вверх и держит его в воздухе и горизонтальную, которая заставляет его двигаться вперед. Хотя правильней сказать не вперед, а туда, куда она направлена. Можно и вбок или назад, что вертолет с успехом и делает, кстати.

Вот, собственно, и все. На вопрос о том, мы ответили. Конечно теория и практика этого вопроса значительно сложнее, но общий принцип полета именно таков.

Скажу, что на самом деле несущий винт вместе с массивной осью и тяжелыми сопутствующими механизмами никуда не отклоняется. Это, мягко говоря, трудно осуществимо и технически нецелесообразно. И тем не менее плоскость вращения винта наклоняется. Говоря вертолетным языком создается «перекос винта». Достигается он за счет изменения положения лопастей, которые подвешены к оси на специальных шарнирах, а управляет этим процессом специальное устройство, называемое « ». Все, вертолет полетел… И именно туда, куда нам нужно.

КА-52 Аллигатор. Хвостового винта нет.

Всех эти заумных понятий мы еще очень популярно (и незаумно:-))коснемся в дальнейших наших разговорах, а сейчас я напоследок еще упомяну об одной необходимой вещи. Вы наверняка все видели у вертолетов маленький хвостовой винт и задавали себе вопрос: «Для чего он?». Отвечаю. Я думаю все, даже ярые нелюбители физики слышали про три закона Ньютона. А если не слышали, то поверьте мне на слово, я знаю, что говорю:-). Так вот третий закон в популярной форме гласит: «Каждое действие равно противодействию.» Именно согласно этому выражению возникает так называемый реактивный момент. То есть если несущий винт вертолета вращается, например, вправо, этот момент будет стремиться повернуть корпус вертолета влево (или же наоборот). Чтобы устранить эту совсем ненужную тенденцию и существует хвостовой винт. Он работает, как обычный тянущий и, создавая тягу, обратную реактивному моменту просто его уравновешивает. А если вертолету нужно повернуть, то тяга этого винта меняется за счет поворота его лопастей.

Есть достаточно вертолетов без хвостового винта. Это, например, всем известные КА-50 и КА-52 . Но у них на одной оси как бы два несущих винта. И вращаются они в разные стороны, тем самым уравновешивая вредный реактивный момент.

Все. Сказано уже более чем достаточно. Теперь если Вас спросят , Вы без труда сможете на этот вопрос ответить. И я Вам советую присмотреться к современным типам этого летательного аппарата. Они сейчас развились в некий тип, стоящий в определенном смысле особняком от традиционной авиации и иной раз просто завораживают своим видом и своими возможностями… Хотя, впрочем, продолжение следует…

P.S. Напоследок маленький ролик с участием МИ-24 . Не российского, к сожалению. Вот так люди заботятся о технике, тем более такой заслуженной. Второй ролик – пилотаж Ми-24.

Фото и картинки кликабельны.

20.06.2015

Принцип полета самолета и вертолета


Всякое тело, движущееся в воздухе, непрерывно испытывает со стороны последнего противодействие своему движению. Поэтому, чтобы продвинуть тело, нужно преодолеть сопротивление, приложить некоторую силу. Сила сопротивления воздуха, которую встречает движущееся в нем тело, прямо пропорциональна плотности воздуха, площади тела, квадрату скорости движения и зависит от формы тела, его гладкости и положения в воздушном потоке.
На основании этого основного закона аэродинамики можно установить, что если телам различной формы и размеров, помещенным в различную среду, придать одну и ту же силу, то скорость продвижения их будет различной.
Если в поток воздуха поместить тела различной формы - пластинку, тело с угловатыми формами и каплевидное тело, то окажется, что чем больше разница давлений спереди и сзади их, тем больше область завихрения, меньше скорость продвижения тел в воздухе и больше сила сопротивления. Эта сила, направленная прямо против движения тел, называется силой лобового сопротивления, или лобовым сопротивлением.
При обтекании тела с угловатыми формами поток тормозится меньше, чем при обтекании пластинки, следовательно, меньшими будут и область пониженного давления, и лобовое сопротивление (рис. 1).

Если же в поток воздуха поместить каплевидное тело, имеющее более совершенную аэродинамическую форму, то давление впереди и сзади этого тела будет незначительным, так как струйки воздуха плотно обтекают его и почти не образуют завихрений. При наличии таких тел для преодоления лобового сопротивления потребуется наименьшая сила. Из сказанного становится понятным, что в авиации решающее значение имеют обтекаемые формы тел, создающие возможно малое сопротивление и не вызывающие завихрений. К таким телам прежде
всего относятся каплевидные и крылообразные тела. Крылья в самолете являются его основными частями. Они создают подъемную силу и делают возможным полет.
Рассмотрим в общих чертах причины возникновения подъемной силы (рис. 2). Пусть крыло движется в воздухе под некоторым углом атаки. Частицы воздуха, ударяясь о летящее крыло, будут огибать как верхнюю, выпуклую, так и нижнюю, плоскую или слегка вогнутую, поверхность крыла. В одно и то же время струйкам, обтекающим крыло сверху, приходится пройти больший путь, чем струйкам, обтекающим крыло снизу. Значит верхние струйки будут двигаться с большей скоростью, чем нижние.


Из закона Бернулли следует, что чем больше скорость потока, тем меньше в нем давление. Поэтому над крылом создается меньшее давление, чем под крылом. В результате разности давлений крыло, с одной стороны, как бы подсасывается вверх за счет пониженного давления, а с другой - подпирается тоже вверх за счет повышенного давления. Вследствие этого и возникает подъемная сила, действующая снизу вверх и направленная перпендикулярно потоку воздуха. На этом свойстве крыла и основан полет самолета и вертолета как аппаратов тяжелее воздуха.
Подъемная сила у самолета появляется только в том случае, если он движется с достаточной скоростью. Чтобы самолет мог оторваться от земли, подъемная сила его крыла должна быть больше веса самолета.
Для того чтобы самолет мог двигаться в воздухе с определенной скоростью, он должен все время преодолевать сопротивление воздуха, а при разбеге во время взлета еще и трение колес о землю. Силой, преодолевающей сопротивление воздуха и придающей поступательную скорость самолету, является сила тяги воздушного винта, вращаемого мотором.

Устройство самолета


К числу основных частей самолета относятся крылья, корпус, органы устойчивости и управления, органы для передвижения и посадки, винтомоторная группа (рис. 3).
Крылья являются одной из наиболее важных частей самолета. От формы в плане и в поперечном сечении, а также от размеров крыльев зависят лётные качества самолета.
Самолет типа моноплан имеет одно крыло, а типа биплан - два крыла. Верхние и нижние крылья связаны между собой стойками. К верхним и нижним крыльям подвешены на шарнирах элероны. В плане крыло самолета с элероном чаще всего имеет прямоугольную форму с эллиптическим закруглением концов.


Корпус самолета (фюзеляж) является основной частью конструкции, с которой соединяются центроплан, крылья, моторная установка, шасси и хвостовое оперение. Кроме того, он служит для размещения полезной нагрузки самолета (пассажиров, грузов и т. п.).
Органы устойчивости и управления самолетом состоят из элеронов и хвостового оперения.
Элероны являются частью крыла и представляют собой подвижные небольшие крылышки, расположенные по концам крыльев самолета. Элероны служат для сохранения самолетом поперечной устойчивости и для наклона его при поворотах вокруг продольной оси.
Хвост самолета состоит из горизонтального и вертикального оперений. При их помощи самолет сохраняет в воздухе продольную устойчивость, поднимается вверх, снижается и изменяет направление полета.
Горизонтальное оперение состоит из стабилизатора - неподвижной части, обеспечивающей самолету продольную устойчивость в полете (в вертикальном направлении), и подвижной части - рулей высоты. Они являются органами управления самолетом в вертикальной плоскости и служат для перевода его на подъем или снижение.
Вертикальное оперение состоит из киля, неподвижно соединенного с хвостовой частью фюзеляжа и служащего для придания устойчивости самолету в полете (в горизонтальном направлении), подвижной части - руля направления, являющегося органом путевой устойчивости и управляемости. При его помощи можно изменить направление полета самолета вправо и влево, т. е. в горизонтальной плоскости.
Органы для передвижения и посадки - это шасси с хвостовым или передним колесом. Шасси самолета является взлетно-посадочным приспособлением, необходимым для разбега при взлете, смягчения удара при посадке и улучшения управляемости при рулении на земле. В зимних условиях для предохранения от зарывания в снег устанавливается хвостовая лыжа (лыжонок).
Посадка самолета происходит на три точки, например на два передних колеса и одно хвостовое.
Управление самолетом осуществляется при помощи рулей высоты, руля направления и элеронов, Основным требованием, предъявляемым к самолету в полете, является устойчивость и управляемость относительно трех осей (рис. 4), проходящих через центр тяжести самолета - продольной оси ХХ1, поперечной оси УУ1 и вертикальной оси ZZ1, перпендикулярной этим осям. Управляемость самолетом вокруг продольной оси достигается элеронами, поперечной оси - рулями высоты, вертикальной оси - рулем направления. Для управления самолетом служат штурвал и ножные педали. Штурвал соединяется с рулями высоты и элеронами, а ножные педали - с рулем направления и хвостовым колесом. При отклонении штурвала влево поднимаются элероны левых крыльев и опускаются элероны правых крыльев; при этом самолет получает левый крен. При взятии штурвала на себя поднимаются рули высоты и самолет идет на подъем. При подаче штурвала от себя самолет пойдет на снижение.


Управление рулем направления осуществляется путем нажатия ногой педали. Например, при нажатии правой ногой руль повернется направо и самолет развернется вправо.
Винтомоторная группа состоит из мотора, воздушного винта, моторной рамы, системы бензо- и маслопитания и управления мотором. Воздушный винт самолета имеет несколько лопастей правого вращения (по часовой стрелке).

Применяемые самолеты и требования к ним


К самолетам, применяемым для аэрофотосъемки лесов и в лесном хозяйстве, предъявляются различные требования.
В лесном хозяйстве для охраны лесов от пожаров, их тушения, аэротаксации лесов, авиахимической борьбы с вредными насекомыми и других работ наибольшее применение получили самолеты ЯК-12 и АН-2. Самолет ПО-2 снят с производства.
Самолет ЯК-12 - моноплан, с закрытой, но хорошо остекленной кабиной, вмещает четырех человек, включая летчика. Удобен для аэровизуальных наблюдений, имеет хороший обзор и небольшую скорость полета - 90-150 км/ч. Крупно- и среднемасштабная аэрофотосъемка с него возможна только для лесохозяйственных целей при условии невысоких требований в отношении строгого соблюдения высоты полета и угла наклона аэроснимков.
Самолет АН-2 широко используется для авиационной охраны лесов от пожаров, их тушения, авиахимической борьбы с вредными насекомыми, транспорта людей и грузов, а также для аэрофотосъемки. В кабине его свободно размещаются два аэрофотоаппарата, специальное к ним оборудование, в том числе радиовысотомер, статоскоп, и другие приборы, и экипаж до б человек. Это позволяет одновременно производить аэровизуальные наблюдения над лесными массивами. При хорошей устойчивости в воздухе, крейсерской скорости 130-210 км/ч пригоден для средне- и крупномасштабной аэрофотосъемки. Обзор у него для аэровизуальных наблюдений хуже, чем у ЯК-12.
Самолеты ЛИ-2 и ИЛ-12 оборудованы наиболее совершенными пилотажными и аэронавигационными приборами, обладают большой грузоподъемностью и скоростью полета (230-400 км/ч), практической высотой полета до 5000 м, что позволяет применять их для мелко- и среднемасштабной аэрофотосъемки.
К числу специфических требований к аэрофотосъемочным самолетам следует отнести:
1. Необходимость иметь достаточные размеры кабины, позволяющие разместить аэрофотоаппараты и все оборудование к ним (радиовысотомеры, статоскопы и контрольные приборы) и создавать возможность управления ими в полете и устранения мелких неисправностей.
2. Возможность хорошего обзора для аэросъемщика вперед, в стороны и вниз.
3. Способность быстро набирать высоту до 6000 м, обладать крейсерской скоростью до 350 км/ч, иметь запас горючего на 6-8 ч полета.
4. На заданном режиме горизонтального полета самолет должен обладать хорошей продольной, поперечной и путевой устойчивостью, чтобы обеспечить требования, предъявляемые к геометрическому качеству фотографического изображения местности.
Для авиационного обслуживания лесного хозяйства необходимо иметь самолеты как легкого типа, удобные для аэровизуальных наблюдений, с большим диапазоном скорости - от 80 до 200 км/ч, позволяющие производить полеты на низкой высоте, так и тяжелые самолеты с грузоподъемностью в несколько тонн, способные перевозить грузы, рабочих, парашютистов, разные механизмы и вместе с тем пригодные для посадки и взлета с небольших площадей.

Устройство вертолета


Вертолет - летательный аппарат тяжелее воздуха. Иностранное название его - «геликоптер», происходящее от греческих слов hélicos (винт) и pteron (крыло), т. е. винтокрылый. Русское название «вертолет» указывает на основную особенность этого летательного аппарата - «вертикальный полет».
Вертолет способен взлетать вертикально, прямо с места, садиться также вертикально, без пробега. В воздухе он может двигаться в любом направлении, может неподвижно висеть как над пологом леса, так и на высоте нескольких сот метров. Вертолет может производить посадку на поляну среди леса, на сухое безлесное болото и т. д. Взлетные и посадочные скорости, длина разбега и пробега равны нулю, поэтому вертолет не нуждается в специальных аэродромах, он является представителем безаэродромной авиации. Вертолет имеет большой диапазон скоростей - от 0 до 150-200 км/ч. Благодаря этим свойствам он является незаменимым средством связи, транспорта, для выполнения различных заданий при исследовании малодоступных мест в необжитых условиях Севера и Сибири.
К основным частям вертолета относятся; несущий винт, корпус, двигатель, трансмиссия, система управления вертолетом, рулевой (хвостовой) винт и шасси (рис. 5).

Несущий винт у вертолета играет роль крыла. Он приводится во вращение двигателем и служит для создания подъемной силы и тяги. Кроме того, несущий винт является органом управления вертолетом. На вертолетах применяются несущие винты с тремя-четырьмя длинными и узкими (диаметром 15-20 л и более) лопастями. Лопасти несущего винта могут поворачиваться относительно своей оси в осевом шарнире.
Управление движением вертолета по вертикали осуществляется путем изменения оборотов несущего винта или угла установки лопастей. При увеличении скорости вращения винта или угла установки лопастей подъемная сила возрастает и вертолет поднимается. Если обороты винта падают или уменьшается угол установки, то убывает подъемная сила и вертолет снижается. Когда подъемная сила полностью уравновешивается полетным весом вертолета, то он «висит» в воздухе, не снижаясь и не поднимаясь. Как только подъемная сила превысит вес вертолета, он поднимается. Вращаясь, несущий винт стремится повернуть вертолет в сторону, противоположную вращению винта, т. е. создается реактивный момент. Для уравновешивания его используется рулевой винт, который при вращении создает тягу и уравновешивает кручение.
Корпус вертолета выполняет те же функции, что и у самолета. Он связывает все части в одно целое. В нем размещаются двигатель, система управления, специальное оборудование, механизм трансмиссии, кабина для пилота и груза.
Силовая установка и трансмиссия. На современных вертолетах применяются обычные поршневые двигатели внутреннего сгорания с воздушным охлаждением, авиационные газовые турбины и турбореактивные двигатели.
Для того чтобы передать мощность двигателя на несущий и хвостовой винты, применяют специальный механизм, называемый трансмиссией.
Управление, например одновинтовым вертолетом, состоит из трех систем; управления несущим винтом, управления рулевым винтом и управления газом двигателя.
Управление несущим винтом осуществляется ручкой управления обычного самолетного типа при помощи автомата-перекоса и рычагом «шаг-газ». Управление рулевым винтом осуществляется обычными педалями ножного управления. Управление двигателем выполняется тем же рычагом «шаг-газ», которым управляется и несущий винт.
Рычаг «шаг-газ» называется так потому, что при его перемещении одновременно изменяются шаг винта и мощность (газ) двигателя. Например, при движении рычага «шаг-газ» вниз установочные углы или шаг лопасти несущего винта будут уменьшаться, уменьшится при этом и мощность двигателя. Следовательно, вертолет начнет снижаться.
Хвостовой винт устанавливается только на одновинтовых вертолетах. Он уравновешивает реактивный момент несущего винта и осуществляет путевое управление, т. е. используется для выполнения поворота.
Шасси служит для погашения возможных ударов, толчков при приземлении и опорой при стоянке. Шасси бывает колесное, поплавковое и полозковое.
На легких вертолетах обычно бывает три колеса, а на тяжелых - четыре.

Классификация вертолетов


Вертолеты различаются по количеству несущих винтов, их расположению, способу привода вращения. В соответствии с этими признаками вертолеты бывают одновинтовыми с рулевым винтом, с двумя несущими винтами, расположенными соосно, с двумя продольно расположенными винтами, с двумя поперечно расположенными несущими винтами, с реактивным приводом несущего винта и др. (рис. 6).
Наиболее распространенными являются одновинтовые вертолеты с рулевым винтом конструкции М.Л, Миля (МИ-1, МИ-4, МИ-6, В-2, В-8 и др.). Они просты по конструкции и в управлении. Недостатками их являются длинный хвост (большие габариты) и значительная потеря мощности (до 10%) на работу рулевого винта.


У вертолетов соосной конструкции оба винта находятся на одной оси, один под другим. Вал верхнего винта проходит внутри полого вала нижнего винта. За счет вращения несущих винтов в противоположных направлениях погашается реактивный момент. Эти вертолеты имеют небольшие размеры, малый вес, хорошую управляемость и маневренность,
К недостаткам соосных вертолетов относятся потеря мощности нижним несущим винтом, работающим в струе воздуха, отброшенного верхним винтом, и трудность расчета при конструировании.
По этой схеме создаются легкие вертолеты Н.И. Камовым: одноместные КА-10, двухместные КА-15 и четырехместные КА-18.
У вертолетов с двумя продольно расположенными несущими винтами один винт находится над носовой частью фюзеляжа, а другой - над хвостовой. Винты вращаются в противоположные стороны для взаимного погашения реактивного момента. Недостатком их является то, что задний винт работает в воздушной среде, предварительно возмущенной передним винтом, а это уменьшает коэффициент его полезного действия.
Винты у вертолетов с двумя поперечно расположенными несущими винтами укреплены на специальных балках по бокам фюзеляжа. Вращаясь в противоположных направлениях, они создают хорошую поперечную устойчивость.

Введение

Лопасти является важнейшим элементом конструкции вертолета, поскольку именно они формирует несущую силу, приводящую весь вертолет в движение. Их прочность во многом определяет безопасность полета и должна быть обеспечена в первую очередь.

На первых этапах конструирования и строительства вертолетов самых разных моделей использовались балочные схемы описания напряженно-деформированного состояния несущих лопастей. Однако технический прогресс и бурное развитие информационных технологий привели к возможности использования более точных математических моделей для описания процесса деформирования этих элементов конструкций. В частности, использовали модели тонкостенных балок (схема Власова) и многослойных балок.

В настоящей работе предложено использование наиболее точной трехмерной модели для анизотропного тела. Последнее обстоятельство связано с тем, что предполагаемая конструкция состоит из композитных материалов, образованных из ортотропных стеклотканей, уложенных определенным образом, и сотового заполнителя специальной структуры.

Принцип полета вертолета и основные конструктивные отличия его от самолета

Тяга несущего винта

Вертолет - летательный аппарат тяжелее воздуха.

Подъемная сила и тяга для поступательного движения у вертолета создаются при помощи несущего винта. Этим он отличается от самолета и планера, у которых подъемная сила при движении в воздухе создается несущей поверхностью - крылом, жестко соединенным с фюзеляжем, а тяга - воздушным винтом или реактивным двигателем.

В принципе полета самолета и вертолета можно провести аналогию. В том и другом случае подъемная сила создается за счет взаимодействия двух тел: воздуха и летательного аппарата (самолета или вертолета).

По закону равенства действия и противодействия следует, что с какой силой летательный аппарат действует на воздух (вес или земное притяжение), с такой же силой воздух действует на летательный аппарат.

Тяга и крутящий момент лопасти

Полная аэродинамическая сила лопасти может быть выражена следующей зависимостью:

где - коэффициент аэродинамической силы; - осредненный угол атаки лопасти; - площадь лопасти; - осредненная величина скорости воздушного потока.

Отсюда видно, что аэродинамическая сила прямо пропорциональна углу атаки и второй степени скорости. здесь имеются в виду осредненные значения угла атаки лопасти () и скорости потока по лопасти, ибо, как известно, скорость, и угол атаки для различных сечений лопасти неодинаковы. Рассмотрим составляющие полной аэродинамической силы, направленные параллельно оси винта и параллельно плоскости вращения. Первая составляющая есть не что иное, как тяга одной лопасти, вторая составляющая - сила сопротивления вращению. Так как воздушный поток встречает большую часть лопасти под небольшими углами, а углы установки лопасти так же невелики (не более), то без большой ошибки можно считать, что тяга лопасти и подъемная сила по величине одинаковы, т.е.

Похожие публикации