Реактор рбмк расшифровка. Реактор большой мощности канальный

Вторая жизнь реакторов канального типа

В следующем году исполнится 70 лет с момента пуска первой реакторной установки канального направления. Почему сегодня технологии отказано в развитии и кто с этим не согласен? Объясняет и отвечает главный конструктор энергетических канальных реакторных установок, директор отделения АО «НИКИЭТ» Алексей Слободчиков.

Для начала несколько слов об истории канальных реакторов. Их появление было тесно связано с зарождением самой атомной отрасли, как военно-промышленного комплекса, так и энергетического.

Первый канальный реактор был запущен 19 июня 1948 года в Челябинской области. Разработкой промышленного реактора А занимался главный конструктор Николай Антонович Доллежаль, а руководил научным проектом Игорь Васильевич Курчатов. Безусловно, основным предназначением реактора была наработка оружейного плутония, и первый этап развития канального направления реакторостроения неразрывно связан именно с оборонной тематикой.

Первые реакторы были сугубо утилитарными. В их основе - проточная схема и отсутствие замкнутого контура. В процессе отработки эксплуатационных решений появилась возможность перейти к использованию реактора в классическом промышленном понимании - как части энергетического комплекса. Первым реализовал эту задачу реактор Сибирской атомной станции, построенный в 1958 году. В тот период начали открываться перспективы использования ядерной энергии в мирных целях.

Первая АЭС с канальным уран-графитовым реактором была построена в Обнинске. Реактор АМ по энергетическим меркам обладал невысокой мощностью - всего 5 МВт. Но тем не менее его создание, проектирование и эксплуатация (во многом в исследовательском режиме) позволили решить вопросы, связанные с изучением материалов и их поведения при выработке ядерным реактором электроэнергии.

Точка отсчета
После ввода АЭС в Обнинске следующий этап - Белоярская станция. Этот проект стал смелым не только для своего времени, но и вообще для реакторостроения. На Белоярской АЭС была реализована технология ядерного перегрева пара, что позволило существенно повысить КПД энергоустановки и приблизиться к тем показателям, которые характерны для электростанций с органическим топливом. После этого, на рубеже 1960–1970-х годов появилась возможность вплотную приступить к разработке и строительству реактора РБМК‑1000.

Пуск реактора РБМК‑1000 стал точкой отсчета для крупномасштабного применения атомной энергии в народном хозяйстве. Это был первый блок-миллионник, который достаточно долго оставался единственным с такой мощностью.

Первый энергоблок с реакторами РБМК был запущен в декабре 1973 года на Ленинградской атомной станции. Затем, на протяжении 1970–1980-х годов, последовательно были введены в строй 17 энергоблоков с реакторами РБМК.

Сегодня в России эксплуатируются 11 таких энергоблоков на площадках Ленинградской, Курской и Смоленской АЭС. Четыре энергоблока были построены на Украине, и еще два - на территории Литовской ССР. Мощность последних была увеличена в 1,5 раза - до 1500 МВт (номинальная электрическая мощность). Эти энергоблоки были самыми мощными в то время, и в обозримой перспективе для российской атомной отрасли они пока остаются пределом по мощности отдельного энергоблока.

Биография

Алексей Владимирович СЛОБОДЧИКОВ
родился в 1972 году. Окончил МГТУ им. Н. Э. Баумана по специальности «Ядерные энергетические установки».

С 1995 года работает в АО «НИКИЭТ». Сейчас занимает должность главного конструктора энергетических канальных реакторных установок, директора отделения.

За вклад в работу по восстановлению ресурсных характеристик реакторов РБМК А. Слободчиков в составе авторского коллектива удостоен Премии Правительства Российской Федерации. Создание и промышленное внедрение этой уникальной технологии, разработанной НИКИЭТом совместно с ведущими предприятиями отрасли, российской науки и промышленности, позволяют сохранить АЭС с такими реакторами в единой энергосистеме России до ввода замещающих мощностей.

О настоящем, прошлом и будущем РБМК
Если говорить о доле в энергобалансе реакторов РБМК, то эта цифра в зависимости от года колеблется в районе 39–41%. Пока продолжают эксплуатироваться только блоки, построенные в 1970–1980-х годах. Первый из них был пущен в 1973 году, а самый молодой - третий блок Смоленской станции - в 1990 году. С учетом опыта эксплуатации уран-графитовых реакторов, еще на этапе проектирования был определен срок службы РБМК - 30 лет.

Здесь стоит сделать маленькую ремарку. История развития всего канального направления - если говорить конкретно о реакторах РБМК - это процесс его совершенствования и модернизации в соответствии с последним словом техники на определенный момент. Например, нельзя сравнить техническое состояние реактора 1973 года (такого, как на Ленинградской АЭС) с тем, что мы имеем сегодня. За 40 с лишним лет произошли значительные изменения в системах управления, безопасности, непосредственно в топливном цикле и физике активной зоны.

Черной страницей в истории развития как канального, так и вообще мирового реакторостроения стала чернобыльская авария. Но после нее были сделаны соответствующие выводы. Сейчас реактор РБМК называют «реактором чернобыльского типа», но это не совсем корректное определение. Сравнивать то, что было, с тем, что мы имеем сегодня, нельзя. Непрерывный процесс модернизации, о котором я говорил, позволил поставить на рубеже 1990–2000-х годов вопрос о продлении срока службы реакторов до 45 лет. Таким образом, продленный срок службы первого блока ЛАЭС завершится в 2018 году, а эксплуатация третьего блока Смоленской станции закончится в 2035 году.

О графитовых элементах и прогнозировании искривлений
Существуют разные виды канальных реакторов. Например, в Канаде основу атомной энергетики составляют реакторы CANDU с тяжелой водой. В нашей стране эксплуатируются только уран-графитовые канальные реакторы. Графит - это нетривиальный материал, он не похож по своим свойствам на сталь или бетон. Изучение графита как элемента активной зоны началось с первого дня эксплуатации промышленных аппаратов.

Уже тогда было понятно, что под влиянием высокой температуры и высокоэнергетических потоков этот материал подвержен деградации. При этом изменения физико-механических свойств графита, его геометрии отражаются на состоянии активной зоны в целом. Изучением этого вопроса подробно занимались не только советские ученые. Изменения состояний графита интересовали также наших американских коллег.

Одна из основных проблем - изменение геометрии графитовых элементов. Активная зона реактора РБМК состоит из графитовых колонн. Каждая колонна имеет высоту 8 метров и состоит из 14 графитовых блоков - параллелепипедов высотой 600 мм и сечением 250×250 мм. Всего таких колонн 2,5 тыс.

Сама же активная зона имеет высоту 7 метров, длина тепловыделяющей сборки, которая находится в ней, - также 7 метров, а общая длина топливного модуля - 16 метров.

Нужно понимать, что активная зона представляет собой единое целое, поэтому изменения одного элемента по цепочке - кумулятивным эффектом - передаются сначала на близлежащие области, а впоследствии могут охватить всю геометрию активной зоны. Один из самых негативных факторов изменений графитовых блоков - искривление колонн и, как следствие, прогибы топливных каналов и каналов СУЗ.

При монтаже все колонны, разумеется, вертикальны, но в процессе эксплуатации эта вертикальность теряется. Если снова обратиться к истории, то можно увидеть, что для промышленных аппаратов и первых уран-графитовых реакторов этот процесс начался в первые годы эксплуатации. Тогда же были поняты механизмы этого явления. При разработке реактора РБМК часть процессов удалось предотвратить конструкторскими решениями.

Полностью избавиться от изменений невозможно. Прогнозировать их появление сложно. При 45-летнем сроке службы реактора предполагалось, что процесс изменений войдет в активную фазу на рубеже 43–44-го годов. Но получилось, что с проблемой мы столкнулись на рубеже 40-го года эксплуатации. То есть погрешность прогнозирования составила порядка трех лет.

В 2011 году на первом энергоблоке Ленинградской станции были зафиксированы изменения геометрии: искривление технологических каналов (в них устанавливается ядерное топливо - тепловыделяющие сборки), каналов стержней управления и защиты. Я хотел бы обратить ваше внимание на то, что эксплуатация РБМК предполагает постоянный контроль параметров, определяющих безопасность. С помощью ультразвукового контроля ведется наблюдение за диаметром каналов и искривлением, целостностью, взаимным состоянием элементов, которые определяют работоспособность при различных (как номинальных, так и переходных) режимах. Когда при плановом контроле было обнаружено начало процесса изменений, стало понятно: раз процесс начался, то его скорость будет достаточно высока; эксплуатация реакторной установки в таких условиях требует дополнительных решений.

Основные показатели реакторов РБМК

Поиск правильных решений
При искривлении технологических каналов и каналов СУЗ в первую очередь необходимо обеспечить безоговорочную работоспособность исполнительных механизмов систем управления и защиты, а также тепловыделяющих сборок в условиях изменяющейся геометрии.

Также требуется подтвердить способность технологических каналов, работающих в условиях прогиба, сохранять прочностные свойства. На первом блоке Ленинградской станции количество технологических каналов - 1693, и ни один из них при эксплуатации в условиях искривления не находится в зоне риска с точки зрения его работоспособности.

Еще один важный момент: должны быть обеспечены все технологические операции, связанные с загрузкой и выгрузкой тепловыделяющих сборок. Отличительная черта, она же преимущество, реактора РБМК - возможность его эксплуатации в условиях непрерывных перегрузок. Конструкция позволяет проводить перегрузку при эксплуатации непосредственно на мощности. Это обеспечивает гибкий топливный цикл, формирует активную зону и увеличивает выгорание. Собственно, это и определяет экономику: реактор не работает кампаниями, он работает в режиме постоянных перегрузок.

В 2011 году на Ленинградской станции был выполнен ряд работ, подтвердивших работоспособность элементов реакторной установки в условиях прогиба до 100 мм. После этого первый энергоблок ЛАЭС на короткое время ввели в эксплуатацию под усиленным контролем параметров. Спустя семь месяцев его повторно остановили для расширенного контроля геометрии: было зафиксировано развитие процесса, связанного с изменением формы графитовой кладки. Тогда стало ясно, что дальнейшая работа реактора невозможна. В мае 2012 года первый энергоблок Ленинградской станции остановили.

Одновременно начало изменений было зафиксировано на втором энергоблоке ЛАЭС и на втором энергоблоке Курской атомной станции. Выявленные прогибы говорили о том, что процесс приближается к активной фазе.

Требовалось решение, применимое для всех энергоблоков Ленинградской, Курской и Смоленской атомных станций с реакторами РБМК. Рассматривалось несколько путей. Можно было использовать пассивный метод управления искривлениями, но стало очевидно, что процессы деградации графита и, как следствие, формоизменения связаны с уровнем повреждающих факторов. В первую очередь, с температурой и потоком быстрых нейтронов.

Соответственно, пассивные методы управления этим процессом могли быть таковы: радикальное, до 50%, снижение мощности энергоблоков, для того чтобы появился значимый эффект; или их эксплуатация в сезонном режиме. То есть четыре месяца блок эксплуатируется, потом несколько месяцев стоит. Но эти методы подходили только для тех реакторов, где процесс изменений не зашел далеко.

Второе направление - активное, как тогда мы его называли, - это разработка и внедрение ремонтных технологий. Их периодическое применение позволило бы эксплуатировать реакторную установку дольше.

Почему вообще зашла речь о возможности ремонта? Отвечая на этот вопрос, нужно вернуться к опыту промышленных аппаратов, так как для них проблема формоизменения существовала многие десятилетия. Значительные прогибы каналов были зафиксированы в реакторе Сибирской атомной электростанции ЭИ‑2. Если для реактора РБМК прогиб составлял 100 мм, то прогибы технологических каналов в реакторе ЭИ‑2 достигали 400 мм.

С помощью различных технологических приемов на примере промышленных аппаратов была показана возможность частичного ремонта графитовой кладки. Даже сам опыт реактора РБМК говорил о том, что графитовая кладка - элемент сложный, большой, но в какой-то мере ремонтопригодный. На каждом энергоблоке с РБМК проводились замены технологических каналов - это, в числе прочего, связано с воздействием на графитовую кладку.

Большой опыт, накопленный в проектных институтах и непосредственно на станциях в области ремонта в активной зоне, позволил создать и реализовать новые технологии ремонта.

Анализ технологических приемов, использовавшихся на промышленных аппаратах, показал, что для реактора РБМК их применение невозможно по разным причинам. Часть операций неэффективны в условиях РБМК; другие невозможны с точки зрения конструктивных особенностей. Инженеры и конструкторы стали искать новые решения. Требовалась технология, которая позволила бы воздействовать непосредственно на причину формоизменения и изменения геометрии отдельного графитового блока, то есть уменьшала бы его поперечный размер.

Масштаб проблемы предполагал последовательное выведение реакторов РБМК из эксплуатации. В 2012 году - первого, в 2013 году - второго блока Ленинградской станции; в 2012 году - второго блока Курской станции; в течение 2012–2014 годов должна была быть выведена половина реакторов РБМК - 20–25% всей атомной генерации России!

Большинство специалистов понимали, что методы, применимые для промышленных аппаратов, не дадут нужного эффекта в случае с реакторами в силу различных особенностей.

Выручка АЭС с РБМК по годам

Накопленная выручка АЭС с РБМК (2014–2035 гг.)

Определяющее решение
Наконец в июне 2012 года появилось интересное техническое предложение. А спустя месяц, в июле, на Ленинградской АЭС прошло совещание под руководством Сергея Владиленовича Кириенко, в результате которого было принято решение о разработке и внедрении проекта ремонтной программы.

На тот момент гарантий успеха никто дать не мог. Предложенный технологический прием был сложен; в первую очередь, это было связано с тем, что все работы должны были выполняться робототехническими комплексами на глубине порядка 18 метров, в отверстии диаметром 113 мм. Плюс производился ремонт не одной конкретной колонны, а всего реактора.

Работы на первом энергоблоке Ленинградской станции начались в первой декаде января 2013 года.

Получается, что за полгода был продуман весь комплекс операций. Это была напряженная и многофакторная работа, в которой были задействованы три альтернативных разработчика технического комплекса: АО «НИКИМТ-Атомстрой» и две организации вне контура Росатома.

Разработка технических средств стала началом решения проблемы. Параллельно проводился целый комплекс расчетных, научных, экспериментальных работ по подтверждению и изучению возможностей эксплуатации всех элементов активной зоны в условиях искривления, в сочетании с воздействием ремонтной технологии.

Прежде чем выйти на реакторную установку, даже для опытной эксплуатации разрабатываемых устройств, требовалось проведение широкомасштабных испытаний технологии. Безусловно, приоритетным принципом был «не навреди», потому что любое действие было необратимо. Поэтому необходимо было выверить каждый шаг еще на стадии разработки как технологии, так и оснастки.

В научно-исследовательском институте ЭНИЦ, в Электрогорске, на стенде, созданном ранее для других испытаний, прошли полномасштабные испытания оснастки как для резки графитовых колонн, так и для силового воздействия на элементы графитовой кладки. Особое внимание уделялось вопросам обеспечения радиационной безопасности. При проведении любых механических операций по удалению графита (являющегося радиоактивным материалом) нужно учитывать, что он не должен контактировать с окружающей средой.

Все это досконально проверялось в условиях стендовой базы. Еще раз подчеркну: опыта таких работ у нас не было, поэтому все подготовительные процессы велись постепенно. Все технические материалы проходили тщательную экспертизу в Ростехнадзоре. При необходимости проводилась корректировка, вносились дополнения. Только после всех этих процедур мы получили разрешение и начали работы на Ленинградской станции. Они проводились в несколько этапов: первые девять ячеек, один ряд, потом - три ряда, пять рядов, и лишь после этого было принято решение об эффективности технологии и возможности ее применения для всего аппарата.

Технология, как она есть
Первопричина формоизменения графитовой кладки - изменение геометрии графитового блока. После длительной эксплуатации графит переходит в так называемую стадию «распухания»: его слои, наиболее подверженные воздействию температуры и флюенса, увеличивают плотность. А внешние слои графитового блока продолжают усадку. Возникает внутреннее напряжение, приводящее к образованию трещин.

Ширина вертикальной трещины в графитовом блоке со временем увеличивается. Таким образом, геометрические размеры графитового блока, первоначально составлявшие 250×250 мм, увеличиваются до 255×257 мм. Поскольку в кладке тысячи контактирующих между собой графитовых блоков, то возникновение большого количества трещин в них и увеличение их геометрических размеров приводят к тому, что они начинают расталкивать друг друга и постепенно перемещаются от центра к периферии, определяя изменения геометрии.

Появление искривлений также связано с нейтронным потоком, который выглядит как полка со спадом на периферии. Собственно, вся эта полка ведет себя одинаково. В одном ряду находятся 24 графитовых блока, и каждый отталкивает соседа: допустим, первый блок толкнул на 2 мм, следующий - еще на 2, все это суммируется, и в результате получаются достаточно высокие стрелы прогиба на периферии.

Механика этого процесса была подтверждена при измерениях первого энергоблока Ленинградской станции, что и позволило разработать технологию ремонта. Расталкивание, связанное с образованием трещин, и увеличение геометрии - это первопричины формоизменения всей графитовой кладки. Отсюда вывод: в качестве купирующей меры необходимо уменьшить поперечные размеры графитового блока.

Вся технология строится на том, что если негативный фактор - это увеличение размера, то позитивным будет его уменьшение. Такая технология включает, если не останавливаться на промежуточных стадиях, три операции для одной ячейки, которые на первый взгляд выглядят достаточно просто. Первая: с помощью режущего инструмента производится вертикальная резка графитовых блоков. Ширина реза последовательно меняется от 12 до 36 мм - графитовый блок режется с двух сторон, в процессе удаляется «излишек». Вторая операция - сближение разрезанных графитовых блоков, которые подверглись механической обработке. Третья операция - восстановление отверстия.

Для восстановления геометрии реактора в целом разрабатывается схема, учитывающая влияние ячеек, находящихся на периферии, на центр, и наоборот. Это взаимовлияние -определяющий фактор при выборе схемы ремонта, которая в свою очередь влияет на объем работ. Так, для первого блока Ленинградской станции объем ремонта в 2013 году составил 300 ячеек из общего количества - 1693.

Основные принципы технологии ремонта

Для ремонта выбираются схема и геометрическое положение тех ячеек, которые уменьшат общее искривление, что позволит эксплуатировать реактор дальше.

Наряду с проработкой технологии ремонта и ее внедрением выполняется целый научно-технический и расчетный комплекс мероприятий по подтверждению возможности эксплуатации всех элементов реакторной установки после выполнения работ и в условиях продолжающегося формоизменения.

В работах по обоснованию возможности эксплуатации реакторной установки после ремонта участвовали многие предприятия отрасли: НИКИЭТ, ВНИИАЭС, ВНИИЭФ, ОКБМ им. И. И. Африкантова, ЭНИЦ, НИКИМТ.

Общую координацию проводил НИКИЭТ. Он также выполнял функции генподрядчика в сфере разработки, обоснования и выполнения ремонта энергоблока Ленинградской атомной станции.

Общая задача
При таком большом количестве участников процесса не возникало проблем во взаимодействии между ними. Работа на Ленинградской атомной станции стала одним из ярких примеров общего дела, достижения результата, сформулированного следующим образом: разработать и внедрить технологию, выполнить ремонт и обосновать возможность дальнейшей эксплуатации, определить оптимальные условия. При выполнении всех операций также учитывались дальнейшая деградация графита и последующие формоизменения.

Пуск первого блока Ленинградской станции состоялся в ноябре 2013 года. Между моментом принятия решения и пуском энергоблока прошло чуть больше года. В результате мы разработали техническое решение, позволяющее восстанавливать работоспособность графитовой кладки и продлевать срок службы реактора путем повторного проведения аналогичной операции.

Еще одна особенность процедуры восстановления ресурсных характеристик (именно так называется такой ремонт) состоит в том, что невозможно с помощью этой операции сделать из реактора новый. То есть процесс формоизменения будет продолжаться: режется ограниченное количество ячеек, при этом остаются ячейки, которые ремонту не подвергаются, поэтому процесс формоизменения и, соответственно, искривления будет продолжаться. Его скорость фиксируется посредством последовательного контроля.

Методология подразумевает следующее: при контролируемом процессе, его численном прогнозировании определяются время ремонта, периодичность его выполнения и межремонтные интервалы эксплуатации. Безусловно, этот процесс должен циклически повторяться. На сегодня восстановление ресурсных характеристик графитовых кладок выполнено на двух энергоблоках Ленинградской станции: первом и втором - и на первой очереди Курской станции (также первый и второй энергоблоки).

С 2013 по 2017 год технология значительно модернизировалась. Например, сокращено время выполнения работ, оптимизированы технологические операции, существенно сокращена стоимость - практически кратно, по сравнению с энергоблоками Ленинградской АЭС. Можно говорить о том, что технология внедрена в промышленную эксплуатацию.


Научный руководитель проекта: ИАЭ им. И. В. Курчатова , Академик Александров А. П.
Генеральный проектировщик (ЛАЭС): ГСПИ-11 (ВНИПИЭТ), Гутов А. И.
Главный конструктор турбоустановки: ХТГЗ, «Турбоатом» , Косяк Ю. Ф.
Разработчик металлоконструкции: ЦНИИПСК , Мельников Н. П.
Головная материаловедческая организация: «Прометей», Копырин Г. И.
Проектировщик и изготовитель электромеханического оборудования СУЗ, КТО: КБ завода «Большевик» , Клаас Ю. Г.

На данный момент серия этих реакторов включает в себя три поколения. Головной реактор серии - 1-й и 2-й блоки Ленинградской АЭС .

Энциклопедичный YouTube

    1 / 5

    ✪ Энергетические ядерные реакторы

    ✪ Демонтаж ТК и каналов СУЗ

    ✪ Самый первый РБМК: уходит легенда

    ✪ Монтаж контура многократной принудительной циркуляции реактора РБМК-1000

    ✪ НАЭС Снятие с Эксплуатации 1го энергоблока

    Субтитры

История создания и эксплуатации

Реактор первой в мире АЭС (АМ-1 («Атом Мирный»), Обнинская АЭС , 1954 год) был именно уран-графитовым канальным реактором с водяным теплоносителем. Отработка технологий уран-графитовых реакторов производилась на промышленных реакторах, в том числе реакторах «двойного» назначения (двухцелевых реакторах), на которых, помимо «военных» изотопов, производилась электроэнергия, а тепло использовалось для отопления близлежащих городов.

Промышленные реакторы, которые были построены в СССР: А (1948 год), АИ (ПО «Маяк» в Озёрске), реакторы АД (1958 г.), АДЭ-1 (1961 г.) и АДЭ-2 (1964 г.) (Горно-химический комбинат в Железногорске), реакторы И-1 (1955 г.), ЭИ-2 (1958 г.), АДЭ-3, АДЭ-4 (1964 г.) и АДЭ-5 (1965 г.) (Сибирский химический комбинат в Северске) .

Разработка собственно реакторов РБМК началась с середины 60-х годов и опиралась, в значительной мере, на большой и успешный опыт проектирования и строительства промышленных уран-графитовых реакторов. Основные преимущества реакторной установки виделись создателями в:

  • максимальном применении опыта уран-графитовых реакторов;
  • отработанных связях между заводами, налаженном выпуске основного оборудования;
  • состоянии промышленности и строительной индустрии СССР;
  • многообещающих нейтронно-физических характеристиках (малое обогащение топлива).

В целом конструктивные особенности реактора повторяли опыт предыдущих уран-графитовых реакторов. Новыми стали топливный канал, сборки тепловыделяющих элементов из новых конструкционных материалов - сплавов циркония , и с новой формой топлива - металлический уран был заменён его диоксидом, а также параметры теплоносителя. Реактор изначально проектировался как одноцелевой - для производства электрической и тепловой энергии.

Работы над проектом начались в ИАЭ (РНЦ КИ) и НИИ-8 (НИКИЭТ) в 1964 году . В 1965 году проект получил название Б-190, а его конструирование было поручено КБ завода «Большевик». В 1966 году решением министерского НТС работа над проектом была поручена НИИ-8 (НИКИЭТ), руководимому Доллежалем .

При строительстве первых энергетических АЭС в СССР бытовало мнение, что атомная станция является надёжным источником энергии, а возможные отказы и аварии - маловероятные или даже гипотетические события. Кроме того, первые блоки сооружались внутри системы среднего машиностроения и предполагали эксплуатацию организациями этого министерства. Правила по безопасности на момент разработки либо отсутствовали, либо были несовершенны. По этой причине на первых энергетических реакторах серий РБМК-1000 и ВВЭР-440 не было в достаточном количестве систем безопасности, что потребовало в дальнейшем серьёзной модернизации таких энергоблоков. В частности, в первоначальном проекте первых двух блоков РБМК-1000 Ленинградской АЭС не было гидробаллонов системы аварийного охлаждения реактора (САОР), количество аварийных насосов было недостаточным, отсутствовали обратные клапаны (ОК) на раздаточно-групповых коллекторах (РГК) и пр. В дальнейшем, в ходе модернизации, все эти недостатки были устранены.

Дальнейшее строительство блоков РБМК предполагалось осуществлять для нужд Министерства энергетики и электрификации СССР . Учитывая меньший опыт работы Минэнерго с АЭС, в проект были внесены существенные изменения, повышающие безопасность энергоблоков. Кроме того, были внесены изменения, учитывающие опыт работы первых РБМК. В том числе были применены гидробаллоны САОР, функцию аварийных электронасосов САОР стали выполнять 5 насосов, применены обратные клапаны в РГК, сделаны другие доработки. По этим проектам были построены энергоблоки 1, 2 Курской АЭС и 1, 2 Чернобыльской АЭС. На этом этапе закончилось строительство энергоблоков РБМК-1000 первого поколения (6 энергоблоков).

Дальнейшее совершенствование АЭС с РБМК началось с проработки проектов второй очереди Ленинградской АЭС (энергоблоки 3, 4). Основной причиной доработки проекта стало ужесточение правил безопасности. В частности, была внедрена система баллонной САОР, САОР длительного расхолаживания, представленная 4 аварийными насосами. Система локализации аварии была представлена не баком-барботером, как ранее, а башней локализации аварий, способной аккумулировать и эффективно препятствовать выбросу радиоактивности при авариях с повреждением трубопроводов реактора. Были сделаны другие изменения. Основной особенностью третьего и четвёртого энергоблоков Ленинградской АЭС стало техническое решение о расположении РГК на высотной отметке, превышающей высотную отметку активной зоны . Это позволяло в случае аварийной подачи воды в РГК иметь гарантированный залив активной зоны водой. В дальнейшем это решение не применялось.

После строительства энергоблоков 3, 4 Ленинградской АЭС, находящейся в ведении Министерства среднего машиностроения, началось проектирование реакторов РБМК-1000 для нужд Минэнерго СССР. Как отмечалось выше, при разработке АЭС для Минэнерго, в проект вносились дополнительные изменения, призванные повысить надёжность и безопасность АЭС, а также увеличить её экономический потенциал. В частности, при доработке вторых очередей РБМК был применен барабан-сепаратор (БС) большего диаметра (внутренний диаметр доведен до 2,6 м ), внедрена трёхканальная система САОР, первые два канала которых снабжались водой от гидробаллонов, третий - от питательных насосов. Увеличено количество насосов аварийной подачи воды в реактор до 9 штук и внесены другие изменения, существенно повысившие безопасность энергоблока (уровень исполнения САОР удовлетворял документам, действовавшим в момент проектирования АЭС. Существенно увеличились возможности системы локализации аварий, которая была рассчитана на противодействие аварии, вызванной гильотинным разрывом трубопровода максимального диаметра (напорный коллектор главных циркуляционных насосов (ГЦН) Ду 900). Вместо баков-барботеров первых очередей РБМК и башен локализации 3 и 4 блоков ЛАЭС, на РБМК второго поколения Минэнерго были применены двухэтажные бассейны-локализаторы, что существенно повысило возможности системы локализации аварий (СЛА). Отсутствие гермооболочки компенсировалось стратегией применения системы плотно-прочных боксов (ППБ), в которых располагались трубопроводы контура многократной принудительной циркуляции теплоносителя. Конструкция ППБ, толщина стен рассчитывались из условия сохранения целостности помещений при разрыве находящегося в нём оборудования (вплоть до напорного коллектора ГЦН Ду 900 мм). ППБ не охватывался БС и пароводяные коммуникации. Также при строительстве АЭС реакторные отделения строились дубль-блоком, что означает, что реакторы двух энергоблоков находятся по существу в одном здании (в отличие от предыдущих АЭС с РБМК, в которых каждый реактор находился в отдельном здании). Так были исполнены реакторы РБМК-1000 второго поколения: энергоблоки 3 и 4 Курской АЭС, 3 и 4 Чернобыльской АЭС, 1 и 2 Смоленской АЭС (итого, вместе с 3 и 4 блоком Ленинградской АЭС, 8 энергоблоков).

В общей сложности сдано в эксплуатацию 17 энергоблоков с РБМК. Срок окупаемости серийных блоков второго поколения составил 4-5 лет.

Вклад АЭС с реакторами РБМК в общую выработку электроэнергии всеми АЭС России составляет порядка 50 % .

Характеристики РБМК

Характеристика РБМК-1000 РБМК-1500 РБМКП-2400
(проект)
МКЭР-1500
(проект)
Тепловая мощность реактора, МВт 3200 4800 5400 4250
Электрическая мощность блока, МВт 1000 1500 2000 1500
КПД блока, % 31,3 31,3 37,0 35,2
Давление пара перед турбиной, атм 65 65 65 65?
Температура пара перед турбиной, °C 280 280 450
Размеры активной зоны , м:
- высота 7 7 7,05 7
- диаметр (ширина×длина) 11,8 11,8 7,05×25,38 14
Загрузка урана , т 192 189 220
Обогащение , % 235 U
- испарительный канал 2,6-3,0 2,6-2,8 1,8 2-3,2
- перегревательный канал - - 2,2 -
Число каналов:
- испарительных 1693-1661 1661 1920 1824
- перегревательных - - 960 -
Среднее выгорание, МВт·сут/кг:
- в испарительном канале 22,5 25,4 20,2 30-45
- в перегревательном канале - - 18,9 -
Размеры оболочки твэла (диаметр×толщина), мм:
- испарительный канал 13,5×0,9 13,5×0,9 13,5×0.9 -
- перегревательный канал - - 10×0,3 -
Материал оболочек твэлов:
- испарительный канал + 2,5 % + 2,5 % + 2,5 % -
- перегревательный канал - - Нерж. сталь -

Конструкция

Одной из целей при разработке реактора РБМК было улучшение топливного цикла. Решение этой проблемы связано с разработкой конструкционных материалов, слабо поглощающих нейтроны и мало отличающихся по своим механическим свойствам от нержавеющей стали. Снижение поглощения нейтронов в конструкционных материалах даёт возможность использовать более дешёвое ядерное топливо с низким обогащением урана (по первоначальному проекту - 1,8 %). Позднее степень обогащения урана была увеличена.

РБМК-1000

В каждом топливном канале установлена кассета, составленная из двух тепловыделяющих сборок (ТВС) - нижней и верхней. В каждую сборку входит 18 стержневых твэлов . Оболочка твэла заполнена таблетками из диоксида урана . По первоначальному проекту обогащение по урану-235 составляло 1,8 %, но, по мере накопления опыта эксплуатации РБМК, оказалось целесообразным повышать обогащение . Повышение обогащения в сочетании с применением выгорающего поглотителя в топливе позволило увеличить управляемость реактора, повысить безопасность и улучшить его экономические показатели. В настоящее время осуществлён переход на топливо с обогащением 2,8 %.

Реактор РБМК работает по одноконтурной схеме. Циркуляция теплоносителя осуществляется в контуре многократной принудительной циркуляции (КМПЦ). В активной зоне вода, охлаждающая твэлы, частично испаряется и образующаяся пароводяная смесь поступает в барабаны-сепараторы . В барабан-сепараторах происходит сепарация пара, который поступает на турбоагрегат. Остающаяся вода смешивается с питательной водой и с помощью главных циркуляционных насосов (ГЦН) подается в активную зону реактора. Отсепарированный насыщенный пар (температура ~284 °C ) под давлением 70-65 кгс/см 2 поступает на два турбогенератора электрической мощностью по 500 МВт . Отработанный пар конденсируется , после чего, пройдя через регенеративные подогреватели и деаэратор , подается с помощью питательных насосов (ПЭН) в КМПЦ.

Реакторы РБМК-1000 установлены на Ленинградской АЭС , Курской АЭС , Чернобыльской АЭС , Смоленской АЭС .

Авария на ЧАЭС

РБМК-1500

В РБМК-1500 мощность повышена за счёт увеличения удельной энергонапряжённости активной зоны путём увеличения мощности ТК в 1,5 раза при сохранении его конструкции. Это достигается интенсификацией теплосъёма с твэлов при помощи применения в ТВК специальных интенсификаторов теплообмена (турбулизаторов) в верхней части обеих ТВС . Всё вместе это позволяет сохранить прежние габариты и общую конструкцию реактора.

В процессе эксплуатации выяснилось, что из-за высоких неравномерностей энерговыделения, периодически возникающие повышенные (пиковые) мощности в отдельных каналах приводят к растрескиванию оболочек твэлов. По этой причине мощность была снижена до 1300 МВт .

Данные реакторы были установлены на Игналинской АЭС (), и планировались к установке по первоначальному проекту Костромской АЭС .

РБМК-2000, РБМК-3600, РБМКП-2400, РБМКП-4800, (прежние проекты)

В силу общей особенности конструкции реакторов РБМК, в которой активная зона, подобно кубикам, набиралась из большого числа однотипных элементов, идея дальнейшего увеличения мощности напрашивалась сама собой.

РБМК-2000, РБМК-3600

В проекте РБМК-2000 увеличение мощности планировалось за счёт увеличения диаметра топливного канала, числа твэлов в кассете и шага трубной решётки ТК. При этом сам реактор оставался в прежних габаритах.

РБМК-3600 был только концептуальным проектом , о его конструктивных особенностях известно мало. Вероятно, вопрос повышения удельной мощности в нём решался, подобно РБМК-1500, путём интенсификации теплосъёма, без изменения конструкции его основы РБМК-2000 - и, следовательно, без увеличения активной зоны.

РБМКП-2400, РБМКП-4800

Отличаются от всех РБМК активной зоной в форме прямоугольного параллелепипеда и наличием перегревательных каналов из нержавеющей стали. Температура пара в РБМКП-2400 и РБМКП-4800 450 градусов по цельсию [ ] .

МКЭР (современные проекты)

Ожидаемый КПД - 35,2 %, срок службы 50 лет, обогащение 2,4 %.

Достоинства

Практика эксплуатации

Авария 1982, согласно внутреннему анализу главного проектировщика (НИКИЭТ), была связана с действиями оперативного персонала, грубо нарушившего технологический регламент .

Энергоблок Тип реактора Состояние Мощность
(МВт)
Генерирующая
мощность (МВт)
РБМК-1000 остановлен в 1996 году 1000
РБМК-1000 остановлен в 1991 году 1000
РБМК-1000 остановлен в 2000 году 1000
РБМК-1000 разрушен аварией в 1986 году 1000
РБМК-1000 строительство остановлено в 1987 году 1000
РБМК-1000 строительство остановлено в 1987 году 1000
РБМК-1500 остановлен в 2004 году 1300

Игналина-2

РБМК-1500 остановлен в 2009 году 1300

Игналина-3

РБМК-1500 строительство остановлено в 1988 году 1500

Игналина-4

РБМК-1500 проект отменён в 1988 году 1500
РБМК-1500 строительство остановлено в 1990 году 1500

Кострома-2

РБМК-1500 строительство остановлено в 1990 году 1500
РБМК-1000 активен 1000
РБМК-1000 активен 1000
РБМК-1000 активен 1000
РБМК-1000 активен 1000
РБМК-1000 строительство остановлено в 2012 году 1000
РБМК-1000 строительство остановлено в 1993 году 1000
РБМК-1000 активен 1000

Ленинград-2

РБМК-1000 активен 1000

Ленинград-3

РБМК-1000 активен 1000

Ленинград-4

РБМК-1000 активен 1000
РБМК-1000 активен 1000

Смоленск-2

РБМК-1000 активен 1000

РБМК - тепловой одноконтурный энергетический реактор с кипящим водяным теплоносителем в каналах и прямой подачей насыщенного пара в турбины. Замедлителем является графит. Эксплуатируются РБМК мощности 1000 и 1500 МВт. По состоянию на 2009 год эксплуатируется 12 энергоблоков с РБМК на четырёх АЭС.

Подвод теплоносителя осуществляется отдельно к каждому каналу, при этом существует возможность регулировать расход воды через канал. В связи особенностями физики реактора тепловая энергия выделяется неравномерно по объему. Проходя по каналу часть воды испаряется, в каналах с максимальной мощностью массовое паросодержание на выходе достигает 20 %, среднее паросодержание на выходе из реактора 14.5 %.

Кипящая вода из реактора пропускается через паросепараторы. Затем насыщенный пар (температура 284 °C) под давлением 65 атм поступает на два турбогенератора электрической мощностью по 500 МВт. Отработанный пар конденсируется, после чего циркуляционные насосы подают воду на вход в реактор. Два паросепаратора РУ РБМК-1000 имеют цилиндрический горизонтальный стальной корпус длиной 30 м и диаметром 2,3 м. Пароводяная смесь со средним содержанием пара около 15 % (по массе) подводится сбоку через подающие патрубки непосредственно от каналов реактора.

Тепловая мощность реактора, МВт
Электрическая мощность реактора, МВт
Загрузка топлива в стационарном режиме, т.
Высота активной зоны, м.
Диаметр активной зоны, м. 11,8.
Средняя удельная мощность топлива на 1 кг урана, кВт/кг 16,7
Средняя температура воды в активной зоне, o С
Средняя плотность воды в активной зоне, г/см 3 0,516
Размер графитового блока, см 25х25
Плотность графита, г/см 3 1,65
Число технологических каналов
Диаметр отверстия в графитовом блоке, см. 11,4
Число ТВЭЛов в технологическом канале
Наружный диаметр ТВЭЛа, см 1,35
Толщина циркониевой оболочки ТВЭЛа, мм.. 0,9
Диаметр топливной таблетки, см 1,15.
Плотность UO 2 , г/см 3 10,5

Таб. 21 Основные характеристики активной зоны РБМК-1000.

Одним из преимуществ канальных РБМК перед корпусными ВВЭР, является возможность перегрузки выгоревшего топлива без остановки реактора. Загрузка топлива в реактор осуществляется с помощью разгрузочно-загрузочной машины (РЗМ ). При перегрузки канала РЗМ герметично соединяется с верхней часть канала, в ней создается такое же давление, как и в канале, отработанная ТВС извлекается в РЗМ свежая ТВС устанавливается в канал.

В начале эксплуатации реакторов РБМК-1000 использовалось топливо с обогащением 1,8% однако в дальнейшем оказалось целесообразным перейти к топливу с обогащением 2%. В настоящее время осуществляется переход на топливо с обогащением 2,8%.

ТВС и ТВЭЛ реактора РБМК

К ТВЭЛам и ТВС предъявляются высокие требования по надежности в течение всего срока службы. Сложность реализации их усугубляется тем, что длина канала составляет 7000 мм при относительно небольшом его диаметре, и при этом должна быть обеспечена машинная перегрузка кассет как на остановленном, так и на работающем реакторе. Напряженные условия работы ТВС в реакторах РБМК предопределили необходимость проведения большого комплекса предреакторных и реакторных испытаний. Основные параметры, характеризующие условия работы ТВС

В активной зоне реактора РБМК-1000 находится 1693 канала с ТВС, а в РБМК-1500 - 1661 канал. ТВС в процессе эксплуатации в реакторе неподвижны. Регулирование ядерной реакции, поддержания заданной мощности реактора, переход с одного уровня мощности на другой и остановка реактора осуществляются вертикальным перемещением органов регулирование системы управления и защиты в активной зоне.

В реакторах РБМК-1000 и РБМК-1500 применяется два типа ТВС: ТВС рабочая и ТВС рабочая под гамма камеру. ТВС разных типов имеют некоторые конструктивные отличия.

Конструкция ТВС РБМК-1000 и РБМК-1500 с выгорающим поглотителем, и с дистанционирующими решетками из циркониевых сплавов имеет геометрическую стабильность при выгораниях 30 -35 МВт сут/кг урана, обеспечивает высокую безопасность и хорошие экономические показатели активных зон реакторов РБМК. В ТВС РБМК-1000, как правило, используется регенерированное топливо.

В состав ТВС входят два пучка ТВЭЛов, два хвостовика, стержень центральный со штангой (для ТВС рабочей) или труба несущая с центральной полостью для расположения датчиков (для ТВС рабочей под гамма камеру), крепежные и фиксирующие детали.

В ТВС верхний пучок ТВЭЛов соединяется с нижним с помощью стержня центрального со штангой или трубы несущей и крепежных деталей. Общая длина ТВС РБМК составляет 10 м с топливной частью 7 м, в сечении ТВС имеет форму круга диаметром 79 мм, масса ТВС около 185 кг. ТВС РБМК - безчехловая ТВС.

Пучок ТВЭЛов состоит из 18 ТВЭЛов, каркаса с дистанционирующими решетками и 18 обжимных колец, предназначенных для крепления ТВЭЛов в концевой решетке ТВС.

ТВЭЛы - главные функциональные элементы ТВС, одним концом крепятся к концевой решетке, другой конец остается свободным. ТВЭЛы конструктивно представляют собой трубки из сплава циркония, заполненные таблетками спеченного диоксида урана с оксидом эрбия, герметизированные заглушками посредством сварки. Применение ТВЭЛов с оксидом эрбия, интегрированным в топливо, позволило улучшить энергораспределение по реактору, повысить безопасность и технико-экономические характеристики активных зон реакторов РБМК.

Составные части ТВС РБМК-1500 те же, что и ТВС РБМК-1000. Отличие состоит в том, что с целью турбулизации потока теплоносителя и интенсификации теплосъема с ТВЭЛов на верхнем пучке ТВЭЛов дополнительно установлены 18 решеток интенсификаторов теплообмена.

7.3 PWR (Pressurized Water Reactor). Российский аналог (ВВЭР).

PWR - реактор корпусного типа, работающий под высоким давлением водного теплоносителя, некипящий, двухконтурный. PWR самый распространенный тип реактора в мире.

Реактор PWR состоит из корпуса толщиной 150 мм. с внутренним диаметром 5 м, снабженного четырьмя подводящими и четырьмя отводящими патрубками, расположенными в верхней части корпуса на одном уровне. Диаметр патрубков и трубопроводов первого контура 750 мм. Внутренняя поверхность всего первого контура, включая съемную сферическую крышку, плакирована слоем аустенитной нержавеющей стали.

Активная зона набрана из квадратных ТВС, содержащих пучок стержневых ТВЭЛов с диоксидом обогащенного урана. ТВС бесчехловая, она включает в себя наряду с пучком ТВЭЛов и подвижные поглощающие элементы (ПЭЛ).

Перегрузка топлива в реакторах PWR, как и в реакторах ВВЭР, осуществляется при полном сбросе нагрузки и со съемом крышки. Загрузка топлива при каждой частичной перегрузке ведется ТВС с обогащением урана 3,4% в периферийную область активной зоны. Выгрузка отработавших свой ресурс ТВС осуществляется из центральной зоны.

Теплоноситель первого контура находится под давление 150 атм. Температура на выходе из активной зоны реактора 315 ° C, на входе около 275 ° C. Теплоносителя прокачивается вокруг первичного контура мощными насосами, которые могут потреблять до 6 МВт каждая.

Разогретый теплоноситель первого контура поступает в парогенератор, где тепло передается к нижней среднее давление охлаждающей жидкости, которая испаряется с давлением пара. Передача тепла осуществляется через парогенератор, без смешения двух жидкостей, что является желательным, поскольку главная теплоносителя может стать радиоактивными.

Реакторы PWR имеют отрицательный температурный коэффициент реактивности, поэтому в случае аварии и превышения критичности реактора, снижение мощности реактора происходит автоматически.

В СУЗ для поддержания критичности реактора кроме раствора бора и поглощающих стержней используют возможности управления мощностью с помощью контроля отвода тепла. Увеличение температуры в петле первого контура приводит к уменьшению мощности и наоборот. При незапланированном росте мощности оператор может добавить борную кислоту или уменьшить мощность насоса для повышения температуры теплоносителя первого контура.

Преимущества:

  • отрицательный мощностный коэффициент реактивности.
  • низкая стоимость теплоносителя и замедлителя.
  • теплоноситель второго контура не загрязняется РАО.

Недостатки:

  • Повышенные требования к прочности корпуса, и конструктивных материалов в связи с высоким давлением в нутрии первого контура.
  • Высокая стоимость парогенератора.
  • Пароциркониевая реакция с выделением водорода.

Примечание: Самая крупная авария после аварии на ЧАЭС 1986 года (уровень 7 INES), произошла с реактором PWR в 1979 году на АЭС «Три-Майл Айленд» США (уровень 5 INES).

В активной зоне реакторов РБМК-1000 и РБМК-1500 с шагом квадратной решетки 250 мм расположены соответственно 1693 и 1661 технологических канала, вертикально пронизывающие семиметровую толщину собранного из блоков графитового замедлителя. В несущей трубе каждого канала располагаются ТВС. К канальной трубе Ø 80×4 мм из сплава Zr = 2,5 % Nb в ре-кристаллизованном состоянии диффузионной сваркой с двух сторон крепятся наконечники из стали ОХ18Н10Т, позволяющие плотно подключить каждый канал к коллектору теплоносителя. Теплоноситель — вода под давлением 8,0 МПа (8,7 МПа в случае РБМК-1500) подается в канал снизу, а через боковой штуцер в верхней части канала отводится насыщенный пар под давлением 7,3 МПа (7,5 МПа в случае РБМК-1500). Такая конструкция канала позволяет с помощью перегрузочной машины легко осуществлять загрузку и перегрузку ТВС, в том числе на работающем реакторе, по две-три штуки ежесуточно, согласно регламенту эксплуатации. Для улучшения теплоотвода от графитовой кладки на канальную трубу надеваются графитовые кольца, заполняющие газовый зазор между кладкой и каналом.

В канал реактора РБМК-1000 по существу загружается кассета, состоящая из двух отдельных ТВС, расположенных одна над Другой, связанных в единое целое полым несущим стержнем из сплава Zr = 2,5 % Nb (Ø 15×1,25 мм) и крепящихся верхней частью через переходник к подвеске из нержавеющей стали, имеющей захватное устройство для транспортировки. В полости несущего стержня в отдельной трубчатой оболочке из циркониевого сплава располагаются датчики контроля энерговыделения, либо дополнительные поглотители нейтронов, служащие для выравнивания энерговыделения в активной зоне реактора.

Каждая верхняя и нижняя ТВС образованы параллельным пучком стержневых твэлов из 18 штук, расположенных в поперечном сечении по двум концентрическим окружностям с фиксированным по радиусу шагом, что создает устойчивый теплосъем в течение всего срока службы твэлов. Фиксация твэлов обеспечивается каркасом, образованным несущим центральным стержнем и десятью дистанционирующими решетками, равномерно расположенными по высоте каждой ТВС и удерживающими в рабочих отверстиях-ячейках каждый твэл пучка. Дистанционирующие решетки собираются из отдельных фигурных ячеек, сваренных между собой в точках и скрепленных снаружи ободом. В каждой ячейке имеются внутренние выступы длиной 0,1-0,2 мм: по четыре в ячейках наружного и по пять в ячейках внутреннего ряда твэлов, прочно, с натягом фиксирующие пропущенные сквозь ячейки твэлы. Это предупреждает радиальные перемещения твэлов в ячейках, которые могут бьть возбуждены вибрацией конструкции под действием турбулентного потока теплоносителя. Таким путем исключается возникновение феттинг-коррозии в местах касания оболочек твэлов с металлом ячеек. Решетки выполнены из нержавеющей аустенитной стали (ведутся работы по замене материала циркониевым сплавом). Дистанционирующие решетки имеют свободу перемещения вместе с пучком твэлов несущего стержня, однако поворот решетки относительно оси стержня исключен.

Твэлы одним концом кольцевыми замками, обжимаемыми в вырезы фигурных наконечников, крепятся к несущей решетке. Другие концы твэлов остаются свободными. Несущая решетка -концевая, она жестко крепится к осевой половине несущего стержня. Противоположные концы несущих стержней срезаны уступом на половину диаметра, что позволяет жестко замкнуть их втулкой, исключив какое-либо взаимное перемещение, и образовать единую конструкцию из двух ТВС. При этом между двумя пучками твэлов в средней части кассеты остается исходный компенсирующий зазор, размер которого (около 20 мм) обеспечивает несмыкание пучков твэлов в процессе осевого термического расширения, пучков, термического «храповика» и встречного радиационного роста оболочек твэлов. Сборка ТВС осуществляется так, чтобы внутритвэльные газосборники примыкали к несущим решеткам и находились на границе активной зоны реактора, т.е. в нижней части нижней ТВС и в верхней части верхней ТВС. Каждая сборка из двух ТВС содержит 36 твэлов, их число во всей активной зоне около 60000. Общая длина всей сборки ТВС с подвеской около 10 м, каждой ТВС — около 3,65 м. Масса двух ТВС 185 кг, из которых 130 кг приходится на диоксид урана 2,4 %-ного обогащения по 235U.

Поступающий в технологический канал теплоноситель в однофазном состоянии движется вверх со скоростью 4-7 м/с в зависимости от профилирования расхода теплоносителя по радиусу активной зоны реактора. На экономайзерном участке канала (на уровне около 2,5 м от входа в нижнюю ТВС) теплоноситель нагревается до температуры насыщения. Выше этой области возникает развитое кипение и достигается двухфазное состояние с максимальным массовым паросодержанием на выходе из канала до 27 % (среднее значение по активной зоне 14,5 %) и максимальной скоростью движения до 20 м/с. Тепловая мощность наиболее напряженного канала составляет 3000 кВт при глубине выгорания топлива 18000 МВт*сут/т U (среднее значение по активной зоне). Длительность пребывания ТВС в активной зоне реактора 3 года.

Сборка ТВС реактора РБМК-1500 отличается от сборки ТВС реактора РБМК-1000 использованием в каркасе верхней ТВС в области двухфазного состояния теплоносителя особых дистанционирующих решеток, расположенных через одну и имеющих по внутренней поверхности крепежного обода ряд отражателей потока теплоносителя, обеспечивающих его принудительное организованное вращение, а следовательно, интенсификацию теплосъема практически при сохранении параметров теплоносителя на входе в канал. Такое решение позволило поднять энерговыделение в реакторе РБМК-1500 в полтора раза, а тепловую мощность реактора довести до 4800 МВт при максимальном массовом паросодержании теплоносителя на выходе из активной зоны реактора, достигающем 40 % (среднее значение по активной зоне 30 %), скорости его движения 25 м/с и устойчивом запасе до кризиса теплосъема. Обогащение диоксида урана по 235U в твэлах РБМК-1500 составляет 2 %.

В качестве тепловыделяющего элемента в реакторе РБМК-1000 используется закрытая с обоих концов циркониевая трубка диаметром 13,9 мм, толщиной стенки 0,9 мм и длиной около 3,5 м, заполненная таблетками топлива диаметром 11,5 мм и высотой 15 мм. Для уменьшения величины термического расширения топливного столба, таблетки имеют лунки. Начальная среда под оболочкой заполнена гелием под давлением 5кгс/см 2. Топливный столб фиксируется пружиной. Максимальная температура в центре топливной таблетки может достигать 2100ºС. Реально эта температура не выше 1600ºС, давление гелия до 17 кгс/см 2 , а температура наружней поверхности оболочки ТВЭЛ около 300°С.

Тепловыделяющие элементы (твэлы) компонуются в тепловыделяющие сборки (ТВС) по 18 штук в каждой; 6 штук по окружности диаметром 32 мм и 12 штук – диаметром 62 мм. В центре – несущий стержень (см. рис. 2.14, сечение Б-Б). ТВЭЛы в сборке скреплены через каждые полметра специальными дистанционирующими решетками.

Основным топливным блоком реактора является тепловыделяющая (или рабочая) кассета, она состоит из двух ТВС, соединенных общим несущим стержнем, штанги, наконечника и хвостовика. Таким образом, часть кассеты, располагающаяся в активной зоне, имеет длину около 7м.

Кассеты омываются водой, при этом нет прямого контакта топлива с теплоносителем при нормальном режиме работы реактора.

Для получения приемлемого коэффициента полезного действия атомной станции необходимо иметь возможно более высокую температуру и давление генерируемого реактором пара. Следовательно, должен быть предусмотрен корпус, удерживающий теплоноситель при этих параметрах. Такой корпус является основным конструктивным элементом реакторов типа ВВЭР. Для реакторов РБМК роль корпуса играет большое количество прочных трубопроводов, внутри которых и размещаются кассеты. Такой трубопровод называется технологическим каналом (ТК), в пределах активной зоны он циркониевый и имеет диаметр 88 мм при толщине стенки 4 мм, в РБМК-1000 1661 технологических канала.

Рис. 1.14. Тепловыделяющая сборка реактора РБМК

Технологический канал (см. рис. 1.13) предназначен для размещения ТВС и организации потока теплоносителя.

Корпус канала представляет собой сварную конструкцию, состоящую из средней и концевых частей. Средняя часть канала выполнена из циркониевого сплава, концевые из нержавеющей стали. Между собой они соединены переходниками сталь-цирконий. Корпус канала рассчитан на 23 года безаварийной работы, однако при необходимости на остановленном реакторе может быть извлечен дефектный корпус канала и на его место установлен новый.

Топливная кассета устанавливается внутри канала на подвеске, которая удерживает ее в активной зоне и позволяет с помощью РЗМ производить замену отработанной кассеты без останова реактора. Подвеска снабжена запорной пробкой, которая герметизирует канал.

Кроме того, в реакторе размещены каналы управления и защиты. В них располагаются стержни поглотители, датчики контроля энерговыделения. Размещение каналов управления в колоннах графитовой кладки автономно от технологических каналов.

Пространство между графитом и каналами заполнено газом, имеющим хорошую теплопроводность, малую теплоемкость и не оказывающим существенного влияния на ход цепной реакции. Лучшим с этой точки зрения газом является гелий. Однако из-за его высокой стойкости он применяется не в чистом виде, а в смеси с азотом (на номинальном уровне мощности 80% гелия и 20% азота, при меньшей мощности азота больше, при 50% номинальной может быть уже чистый азот).

Одновременно предотвращается контакт графита с кислородом, т.е. его окисление. Азотно-гелиевая смесь в графитовой кладке продувается в направлении снизу вверх, это делается для достижения третьей цели – контроля целостности технологических каналов. Действительно, при течи ТК влажность газа на выходы из кладки и его температура увеличивается.

Для улучшения теплопередачи от графита к каналу при движении газа создается своеобразный лабиринт (см. рис. 1.15). На канал и отверстия блоков поочередно надеваются разрезные графитовые кольца высотой 20 мм каждое на участке 5,35 м в центре активной зоны. Таким образом, газ движется по схеме: графит – разрез кольца – стенка канала – разрез кольца – графит.

Похожие публикации