Расчет автономной работы потребителя от аккумуляторов. Калькуляторы

В жизни современного человека используются повсеместно.

Практически любая электроаппаратура и электротехника работает от питания, поступающего от химических источников тока.

Израсходованные батарейки просто сменяют новыми, что определяет простоту их использования.

При этом мало кто знает, что часто выбрасываются в мусор еще вполне пригодные элементы питания, которые подлежат восстановлению с помощью:

  • острого гвоздя или шила;
  • шприца;
  • зарядного устройства для аккумуляторных батарей;
  • горячей воды;
  • дистиллированной воды;
  • столового уксуса (концентрации 9%);
  • раствора соляной кислоты (концентрации 10%);
  • небольшого молотка;
  • смолы и пластилина.

Итак, в рамках данной статьи мы увеличиваем время работы (срок службы) батарейки, которая, казалось бы, уже выработала свой рабочий ресурс.

Но обо всем по порядку.

Увеличиваем время работы (срок службы) батарейки

Регенерация (восстановление) источника питания возможно лишь в случае, когда его емкость и напряжение не понизилось до предельного значения.

Батарейки класса АА (1,5 Вольт) выдерживают минимальный порог в 0,7-0,8 Вольт. В случае, если это значение еще не достигнуто, можно приступать к реанимации.

Проще всего увеличить срок службы батареек, которые разряжались под высокой нагрузкой. Такие элементы питания можно встретить в фонарях, игрушках, магнитолах и др.

Химические источники тока, разряжаемые под малыми нагрузками (часы, радио, фототехника), восстанавливаются значительно хуже, т.к. равномерно вырабатывают положенный ресурс без остатка.

Батарейку, которая долгое время лежала без действий и подсохла, можно регенерировать путем следующих операций:

1. Проделываем двухсторонние отверстия на глубину 3/4 тонким металлическим предметом (гвоздь или шило) по длине батарейки с обоих ее краев, вдоль стержня.

2. Впрыскиваем в проделанное отверстие немного очищенной или дистиллированной воды (шприцем).

3. Наблюдаем, как вода проходит внутри батарейки и вытесняет воздух из другого отверстия.

4. Как только вода проходит по всех батарейке, начинает выступать на противоположной стороне, закрываем отверстия смолой или пластилином.

5. Опробуем «подзаряженную» батарейку в работе.

Время работы батарейки может быть увеличено путем впрыскивания не воды, а столового уксуса (двойной дозы) или раствора соляной кислоты.

Если вышеописанные действия слишком сложны, можно просто поместить израсходованную батарейку в горячую воду на срок в 10 минут.

Кроме того, срок службы батарейки повышается в результате механического воздействия.

Для этих целей нам и понадобится небольшой молоток, которым необходимо обстучать корпус элемента питания.

Вместо молоточка можно применить любой другой предмет, который не повредит целостность корпуса. 2-3 дня работы при небольших токах разряда гарантированы!

Кроме того, можно пробовать оживить батарейку путем помещения ее в специальное зарядное устройство. Делать это можно с крайней осторожностью!

Простые одноразовые батарейки не предназначены для перезарядки, поэтому, такие действия могут использоваться на собственных риск и страх!!!

Вот вопрос на засыпку: батарейки каких марок вы можете назвать навскидку? Многие наверняка вспомнят DURACELL, ENERGIZER, GP — те бренды, что часто мелькают в телерекламе. А какие батарейки вы купите? Почти наверняка — именно этих брендов, которые на слуху и хорошо знакомы благодаря рекламе. То есть — самые дорогие. Думаю, не для кого не секрет, что расходы на рекламу производители обычно закладывают в цену своей продукции… Сейчас на рынке батареек представлено огромное количество торговых марок, которые заявляют на упаковке повышенную работоспособность и надежность. Но так ли велика разница между всевозможными образцами на самом деле? Разумно ли переплачивать за то, что больше всего рекламируют? Именно этот вопрос привел нас к идеи группового теста батареек наиболее популярных типоразмеров.

Текст: Алексей СОРОКИН.

Сравнительный тест батареек проведен в испытательной лаборатории электротехнических изделий «РЕГИОНТЕСТ» «Ивановского государственного химико-технологического университета».

Ликбез перед стартом

Чтобы разобраться в многообразии представленных на рынке торговых марок и провести корректное сравнение батареек по эффективности и работоспособности, необходимо правильно выбрать ассортимент для тестовых испытаний.

Во-первых, это должны быть батарейки одного типоразмера. Мы выбрали для тестирования два самых ходовых формата — АА (LR6, «пальчиковые») и ААА (LR03, «мизинчиковые»).

Во-вторых, это должны быть батарейки одного химического состава. Большинство представленных на рынке элементов питания можно глобально разделить на две основные категории: щелочные батарейки (ALKALINE) и солевые (ZINC).

Солевые батарейки производятся по устаревшей технологии. Правда, несмотря на «пенсионный возраст», они все еще продаются, стоят не дороже 10 рублей за штуку. Однако солевые источники имеют значительно худшие параметры, чем щелочные. Они практически бесполезны на морозе, обладают меньшей емкостью и хуже переносят импульсные и динамичные нагрузки современных гаджетов. Ими, как правило, комплектуются пульты ДУ, простейшие игрушки, настенные часы и другие нетребовательные устройства с низким потреблением энергии.

Щелочные же батарейки стали основой современного потребления элементов питания (более 70 процентов в штуках). Этот вид портативного источника энергии — наиболее эффективен в любых устройствах. Поэтому в сегодняшнем тесте мы будем сравнивать только щелочные батарейки различных производителей.

И, в-третьих, это должны быть батарейки схожих серий или одинакового назначения. Такое условие объясняется тем, что в ассортименте большинства популярных брендов щелочная группа также разделена: на так называемые ультра-щелочные батарейки (их формула модифицирована под импульсное потребление энергии) и батарейки стандартной серии для универсального использования. Некоторые производители выделяют в отдельную группу еще экономичную серию щелочных батареек, наиболее подходящих для устройств с низким потреблением энергии — как более современную альтернативу солевым элементам.

Итак, окончательно уточняем условия тестовых испытаний щелочных батареек: для большей объективности мы выбрали стандартные универсальные серии различных производителей.

Участники сравнительного теста

В нашем групповом тесте участвуют щелочные батарейки следующих торговых марок:

GP Super Alkaline battery

ENERGIZER Alkaline power

DURACELL (щелочные)

ТРОФИ Alkaline

Разумеется, при закупке мы обращали внимание на срок годности батареек. Тестовые образцы выбирали таким образом, чтобы срок годности был до 2021 года. Таким образом, подсевших в процессе хранения батареек в нашем тесте не было.

Немного слов об упаковке: GP, ENERGIZER и KODAK упакованы в пластиковый блистер. Остальные батарейки одеты исключительно в картон. Заметим, что полностью картонная упаковка дороже пластика, она экологичнее в производстве и к тому же легче открывается. А потому картонная упаковка — это плюс производителю.

Все батарейки, участники теста, были куплены в двух крупных торговых сетях схожего формата торговли, что гарантирует ценовую сопоставимость элементов питания.

Цена указана в рублях за одну батарейку.

Интересно, что у всех брендов, кроме DURACELL, батарейки ААА стоят меньше или по крайней мере столько же, сколько и пальчиковые. А вот у DURACELL батарейки АА значительно дешевле (куплены были в одном магазине.

Все бренды, очевидно, делятся на три группы:

дорогие — DURACELL,

на позиции бренда первой цены оказались батарейки ТРОФИ.

Посмотрим, все ли батарейки оправдают свою цену и как более высокая цена влияет на их эффективность?

Методика тестирования

Инженер-испытатель Сергей Баринов начинает тестирование

Во время первого теста инженеры лаборатории проверяли, как быстро садятся батарейки в процессе непрерывной разрядки. Подобное испытание имитирует работу, например, мощного фонарика или машинки на радиоуправлении, то есть любых устройств, которые интенсивно и непрерывно разряжают батарейки.

В схеме испытательного стенда ключевой элемент — резистор с сопротивлением в 1 Ом, что и обеспечивало тестовым образцам постоянную нагрузку. Чтобы контролировать убывающее напряжение в батарейке, к ней через резистор подключили вольтметр, который и фиксировал остаточную энергию. Тест заканчивался, когда напряжение в батарейке падало до 0,9 вольта.

Участникам теста предстоит пройти через два испытания.

Второй тест подвергал батарейки импульсной разрядке, что имитирует работу таких устройств, как цифровой фотоаппарат со вспышкой или любого другого гаджета, для которого характерно мощная, но краткосрочная разрядка.

Испытательная установка для второго теста оказалась более сложная: сюда вошла сама батарейка, вольтметр, показывающий остаточное напряжение, регулятор тока разряда, поддерживающий постоянный ток за счет плавающего сопротивления, амперметр, контролирующий ток на уровне 1000 мА, и устройство с циклическим включением-отключением всей цепи. Нагрузка на батарейку подавалась в течении 10 секунд, после чего нагрузка отключалась на 50 секунд, давая элементам питания время, чтобы несколько восстановиться.

Как и в первом тесте, испытание считается законченным, когда напряжение в батарейке падало до 0,9 вольта.

Необходимость проведения двух тестов обусловлена тем, что различные батарейки могут совершенно по-разному вести себя при различных вариантах разряда. Батарейки, как бегуны, — среди них есть марафонцы, а есть и спринтеры, которые друг другу не соперники.

Тест №1. Непрерывный разряд. Батарейки АА.

Посмотрим, как показали себя батарейки в первом тесте. Дольше всех проработали «пальчики» Kodak с результатом 0,9 часа. Второе место делят GP и ТРОФИ — с результатом 0,8 часа. Популярный бренд Duracell оказался на предпоследнем месте с результатом 0,72 часа. Это на 23 процента меньше чем, время лидера теста. Худший результат показали батарейки торговой марки Energizer, проработав всего 0,64 часа. Интересный факт: разница между рейтингом разных брендов в этом испытании практически всегда составляет 0,1.

Абсолютное время работы батареек АА под непрерывной нагрузкой

Тест №2. Импульсный разряд. Батарейки АА.

В импульсном варианте разряда места распределились совсем по-другому. Взяв реванш за поражение в первом тесте, в лидеры выходит DURACELL, проработав 4,72 часа. Чуть меньшее время — 4,43 часа, показали батарейки фирмы KODAK. На 0,5 часа хуже отработали GP, заняв третье место. На этом группа отрыва заканчивается, остальные батарейки показали заметно худшие результаты. ТРОФИ проработали 3,66 часа, а ENERGIZER 3,58.

Абсолютное время работы батареек АА под импульсной нагрузкой

Таковы сухие и непреклонные результаты измерительных тестов. С точки зрения абсолютного времени работы наиболее выгодно смотрятся батарейки фирмы KODAK — они проработали дольше всех при непрерывной разрядке и показали более, чем достойный результат при импульсной.

С другой стороны, если вы четко знаете, что будете использовать батарейки в высокотехнологичных приборах с периодическими пиковыми нагрузками, то оптимальным вариантом будут элементы питания DURACELL, продержавшиеся в тесте на 0,3 часа больше ближайшего конкурента.

Цена и качество батареек АА

Абсолютное время работы не может быть единственным критерием при выборе любого товара. Бывают ситуации, когда уверенность в максимальном результате стоит того, чтобы за это переплатить. Но наши тесты показали, что эффективность батареек не зависит от их стоимости. И если попробовать оцифровать эффективность, вспомним такое понятие, как соотношение цена/качество. В случае с батарейками это будет удельная стоимость, то есть стоимость единицы времени — одного часа работы. Очевидно, чем меньше удельная стоимость, тем выгодней ваша покупка.

Оценив удельную стоимость всех тестовых батареек, можно придти к интересному выводу: в обоих вариантах теста — непрерывном и импульсном, распределение мест по брендам получилось одинаковым. Впрочем, есть некоторые тонкости, связанные с абсолютным временем работы, о которых нельзя не сказать.

Стоимость 1 часа работы батареек АА под непрерывной и импульсной нагрузкой

Самыми неэкономичными в непрерывном тесте получились DURACELL: их удельная стоимость в 1,5 раза больше, чем у ближайших конкурентов GP и ENERGIZER, а абсолютное время работы разместилось на предпоследнем месте.

Не самыми выгодными оказались и батарейки ENERGIZER. Показав самую низкую продолжительность работы под непрерывной нагрузкой, они имеют к тому же посредственное соотношение цена/качество.

А вот батарейки KODAK в этом тесте смотрятся весьма неплохо. Проработав дольше всех в режиме непрерывного разряда, они обладают привлекательным соотношением цена/качество — 22,6 руб/час. Если вашим приоритетом является абсолютное время работы по умеренной цене, то батарейки KODAK будут удачным выбором.

Лидером по соотношению «цена/качество» под непрерывной нагрузкой стали батарейки АА ТРОФИ. Правда, по абсолютному времени работы они не самые-самые, но они оказались на 30 процентов выгоднее батареек GP, на 70 процентов выгоднее ENERGIZER и более, чем на 150 процентов, выгоднее DURACELL. Легко подсчитать, что по цене одной батарейки DURACELL можно купить 2,5 батарейки ТРОФИ и за те же деньги ваш фонарик просветит в 3 раза дольше…

При импульсном варианте разряда на первое место неожиданно вышли батарейки ТРОФИ. Стоимость часа их работы почти в два раза меньше, чем у лидера продаж DURACELL, ближайшего преследователя ТРОФИ опережают по экономичности на 21 процент с лишним.

Батарейки KODAK во втором тесте показывают себя твердым середнячком с плюсом. Они показали довольно высокую продолжительность работы и хорошую экономичность.

Сравнивая GP и ENERGIZER, удельная стоимость которых практически совпадает, лучше отдать предпочтение батарейкам GP, поскольку их абсолютное время работы значительно выше ENERGIZER.

А вот ситуация с батарейками DURACELL не однозначная. Несмотря на самую высокую стоимость одного часа работы, именно батарейки DURACELL дольше всех продержались под импульсной нагрузкой. За хорошие деньги еще и не так продержишься! Хочешь лучшее — плати больше. Здесь это утверждение срабатывает на все сто.

Заключение по батарейкам АА

DURACELL — один из лучших вариантов для цифровых камерах и других устройств с импульсной нагрузкой, но при условии, что вас совершенно не волнует цена. А вот для работы с постоянным разрядом — в фонариках или радиомашинках, DURACELL не самый удачный выбор.

KODAK — лучший выбор для устройств с равномерным потреблением энергии. Детские игрушки с батарейками, фонарики и т.д. будут очень рады этим элементам питания. Также их можно рекомендовать и для устройств с импульсным потреблением энергии, тем более, что батарейки этой торговой марки обладают достойным уровнем экономичности.

GP — твердый середнячок. Неплохо показали себя в обоих тестах, имеют приемлемое соотношение цена/время работы, что позволяет рекомендовать эти батарейки для всех видов устройств. Конечно, они не станут самыми долгоиграющими и самыми выгодными, но они будут просто рабочей лошадкой для ваших устройств.

ENERGIZER — к сожалению, батарейки этой торговой марки показали себя не с лучшей стороны. Худшие результаты в обоих тестах и высокая стоимость часа работы — вот все, что мы можем про них сказать.

ТРОФИ — бренд показал лучшее соотношение цена/время работы среди все участников теста и уверенную продолжительность работы. Экономичность батареек этой торговой марки наводит на интересную мысль: не лучше ли купить вместо одной дорогой две подешевле, но при этом почти три раза выиграть в запасе электроэнергии?

Батарейки ААА

Если кто-то думает, что результаты тестов для батареек ААА скопируют итоги испытаний элементов питания АА, то это не так: расстановка сил получилась совсем другая и более неожиданная, чем для пальчиковых батареек.

Тест №1. Непрерывный разряд. Батарейки ААА.

Для батареек типоразмера ААА время работы при непрерывном разряде обычно более актуально, чем для их бОльших братьев. Судите сами, лучшая среди ААА батареек проработала в 3,5 раза меньше, чем пальчиковый чемпион типоразмера АА.

Лидером в этом тесте стали батарейки торговой марки ТРОФИ, которые проработали 0,26 часа, оставив позади более именитые бренды. Взглянув на график, можно увидеть, что сформировалась группа лидеров, в которую помимо ТРОФИ входят еще DURACELL с результатом 0,23 часа и GP с 0,20 часа. Далее следуют две торговые марки, результаты которых значительно хуже, чем у лидеров: это ENERGIZER и, вот неожиданность, KODAK. Последние, напомню, были лучшими в непрерывном варианте разряда пальчиковых батареек.

Абсолютное время работы батареек ААА под непрерывной нагрузкой

Тест №2. Импульсный разряд. Батарейки ААА.

А вот результаты теста на импульсную разрядку в целом схожи с результатами тестов пальчиковых батареек, но с одним большим «НО»: батарейки KODAK опять оказались на последнем месте, причем, с приличным отставанием от ближайшего преследователя — ENERGIZER.

Лидером теста стали батарейки DURACELL, которые единственные проработали больше часа. На втором месте оказались GP с 0,93 часа. Тройку лидеров замыкают лидеры теста непрерывной разрядки — ТРОФИ, показавшие 0,88 часа. Обратите внимание на достаточно очевидный разрыв между первой тройкой и остальными брендами.

Абсолютное время работы батареек ААА под импульсной нагрузкой

Цена и качество батареек ААА

Рассчитав стоимость часа работы батареек ААА, мы также получили интересные результаты.

Самыми невыгодными оказались батарейки DURACELL. Мало того, что они показали самую высокую стоимость одного часа работы, в формате ААА они не смогли стать лучшими и по абсолютной продолжительности работы. Так что, в этой конкретной ситуации переплачивать за обильную рекламу и раскрученный бренд — вообще нет никакого смысла.

Батарейки KODAK показали худшее время работы, и, хотя стоимость одного часа работы у них более разумная, чем у DURACELL, экономичность этой марки на общем фоне не высока. И даже ниже, чем у также весьма раскрученных рекламой батарейках ENERGIZER.

Бренд GP вновь проявил себя как твердый середняк с оценкой 5-/4+. Да, они получаются выгоднее, чем ENERGIZER, KODAK и тем более DURACEL. Однако, они в 2 раза дороже, чем батарейки ТРОФИ.

Наиболее привлекательным по соотношению цена-время работы в случае непрерывной нагрузки стали батарейки ТРОФИ, которые имеют не только самую низкую стоимость одного часа работы, но еще и работают дольше всех. Поэтому батарейки ТРОФИ можно рекомендовать для любых устройств — равномерным и импульсным потреблением энергии, вне зависимости от того, что является вашим приоритетом — экономия или длительность работы.

Стоимость 1 часа работы батареек ААА под непрерывной и импульсной нагрузкой

Расстановка сил в тесте с импульсной разрядкой остается аналогичной. С учетом абсолютных показателей можно сделать такие выводы. ТРОФИ, хотя на этот раз и не показали лучшее абсолютное время работы, остались самыми экономичными, причем, с отрывом от ближайшего преследователя в 60 процентов. Это только кажется, что на батарейках много не сэкономишь. Когда разница в их стоимости столь заметна, за год накопится совсем не лишняя в кризис сумма…

Батарейки GP в типоразмере ААА смотрятся заметно интереснее, чем в формате АА. По стоимости часа работы они идут вторым номером в итоговой таблице и по абсолютному времени работы немного уступают лидеру. Так что батарейки GP формата ААА тоже можно рекомендовать, как приемлемый вариант для устройств с эпизодическими, но пиковыми нагрузками.

Наименее привлекательными в импульсном тесте среди батареек ААА оказались ENERGIZER и KODAK — как по времени работы, так и по удельной стоимости.

Заключение по батарейкам ААА.

Подводя итоги теста, можно дать следующие рекомендации:

ТРОФИ -рекомендуем присмотреться к батарейкам этого бренда. Они не просто показали достойное время работы, особенно в тесте с равномерной нагрузкой, где стали лучшими, они еще и выгоднее своих конкурентов минимум на 60 процентов, а ряде случаев — аж в 3 раза.

DURACELL показал лучшее время работы в режиме импульсной разрядки и хорошую продолжительность работы (2 место) в режиме равномерной нагрузки. Однако, батарейки этого бренда — самые дорогие, тут самая высокая стоимость часа работы, которая может отличаться от конкурентов в разы.

GP — если вам не требуется, чтобы батарейка проработала на 20 процентов больше за дополнительные 80 процентов к цене, то это определенно бренд для вас. Причем, совершенно не важно, в каком устройстве вы собираетесь его использовать.

ENERGIZER — к сожалению, ничем нас не удивил, хотя и показали себя лучше, чем в тестах батареек АА. Эти элементы питания можно рекомендовать к покупке, если у вас нет никакой альтернативы.

KODAK — среди «мизинчиковых» батареек эта торговая марка откровенно показала худшие результаты, причем, как по абсолютной продолжительности работы, так и по стоимости часа работы.

Номинации теста

Батарейки KODAK типоразмера АА — лучший выбор для устройств с равномерным потреблением энергии. Детские игрушки с батарейками, фонарики и т.д. будут очень рады этим элементам питания. Также их можно рекомендовать и для устройств с импульсным потреблением энергии.

Батарейки DURACELL типоразмера ААА показали лучшее время работы в режиме импульсной разрядки и одно из лучших - в режиме равномерной нагрузки. Кроме того, элементы питания DURACELL формата АА — отлично подходят для работы в цифровых камерах и других устройств с импульсной нагрузкой, правда, при условии, что вас совершенно не волнует их цена.

Батарейки ТРОФИ обоих типоразмеров - АА и ААА, показали лучшее соотношение цена/время работы среди все участников теста и уверенную продолжительность работы.

Выводы

Результаты сравнительного теста наглядно доказали, что утверждение «дороже — значит лучше» работает далеко не всегда. А затраты на рекламную кампанию бренда особого значения не имеют: батарейки отечественной торговой марки, например, во всех тестах обошли такой раскрученный бренд, как ENERGIZER, а в некоторых испытаниях — не менее известный DURACELL.

Качество батареек не зависит от их розничных цен на полках в магазине. С точки зрения эффективности и стоимости одного часа работы лучшими стали в обоих случаях батарейки ТРОФИ. В остальном же смотрите на результаты теста, сравнивайте их со своими потребностями и принимайте решение, на какой торговой марке остановить свой выбор в следующий раз.

Для каждого случая есть свой оптимальный вариант. С таким выводом и пойдем дальше по жизни.

Как выбрать оптимальную конфигурацию ИБП для организации бесперебойного питания оборудования и бытовых приборов в доме

Ответить на вопрос о выборе конфигурации источника бесперебойного питания для обеспечения надёжного электропитания отопительных и инженерных систем, бытовых электроприборов достаточно сложно. По сути, это уравнение с многими неизвестными. Ведь, заранее неизвестно на сколько плохим будет сетевое электропитание, и какова будет продолжительность отключений электроэнергии.

На первом этапе необходимо определить общую мощность всех потребителей энергии, работу которых необходимо обеспечивать в случае отсутствия сетевого электропитания. Исходя из этого значения необходимо выбрать ИБП мощностью на 20% превышающей максимальное значение нагрузки. После этого нужно определится с ёмкостью внешних аккумуляторных батарей, исходя из необходимого времени резервирования.

Наиболее оптимальным решением бесперебойного питания будет разбить нагрузку на несколько более маленьких групп потребителей. И решать задачи обеспечения резерва раздельно для различных групп потребителей в зависимости от их важности. При выборе конфигурации источника бесперебойного питания и аккумуляторных батарей следует учитывать, что увеличение запаса мощности ИБП не приводит к линейному увеличению длительности резерва. Для обеспечения большой мощности нагрузки необходим более мощный ИБП, а для обеспечения большого времени резерва необходимо увеличивать ёмкость внешних аккумуляторных батарей.

Простой способ расчета времени резерва бесперебойника

Время резерва питания определяется прежде всего двумя параметрами: мощностью полезной нагрузки и общей ёмкостью всех аккумуляторных батарей.

Однако следует отметить, что зависимость времени резерва от этих параметров не линейная. Но для быстрой примерной оценки времени резерва можно использовать простую формулу.

T = E * U / P (часов),

где Е - ёмкость аккумуляторов, U - напряжение аккумуляторов, Р - мощность нагрузки всех подключаемых приборов .

Уточненный способ расчёта времени резерва бесперебойника

Для уточнения расчёта времени резерва дополнительно вводятся специальные коэффициенты: КПД инвертора, коэффициент разряда аккумулятора, коэффициент доступной ёмкости в зависимости от температуры окружающей среды.

С учётом этих коэффициентов формула расчета принимает следующий вид.

T = E * U / P * KPD * KRA * KDE (часов),

где KPD (коэффициент полезного действия инвертора) находится в диапазоне 0,7-0,8,

KRA (коэффициент разряда аккумуляторов) находится в диапазоне 0,7-0,9,

KDE (коэффициент доступной ёмкости) находится в диапазоне 0,7-1,0.

Коэффициент доступной ёмкости имеет сложную зависимость от значения температуры и скорости прикладывания нагрузки. Чем холоднее температура воздуха, тем ниже коэффициент доступной ёмкости. Чем медленнее расходуется энергия батарей, тем больше значения коэффициента доступной ёмкости.

Готовые таблицы значения времени резерва бесперебойников серии SKAT и TEPLOCOM


Необходим один внешний аккумулятор напряжением 12 Вольт

Ёмкость, в Ач Мощность нагрузки, ВА
100 150 200 250 270
26 2ч 18мин 1ч 22мин 55мин 44мин 39мин
40 3ч 37мин 2ч 15мин 1ч 36мин 1ч 15мин 1ч 09мин
65 7ч 01мин 4ч 00мин 2ч 45мин 2ч 12мин 1ч 54мин
100 12ч 00мин 7ч 12мин 5ч 00мин 3ч 40мин 3ч 26мин



Таблица примерного времени резерва

Необходимо два внешних аккумулятора напряжением 12 Вольт

Емкость АКБ, Ач
100 200 300 400 500 600 700 800 900 1000
2х40 9,37 4,06 2,31 1,51 1,36 1,22 1,07 0,53 0,39 0,34
2х65 16,15 7,12 4,40 3,02 2,29 1,56 1,44 1,36 1,28 1,11
2х100 27,11 11,55 7,33 5,23 4,12 3,05 2,44 2,22 2,01 1,49
2х120 32,37 14,52 9,44 6,10 5,11 4,12 3,14 2,51 2,33 2,15
2х150 40,47 17,40 11,24 8,19 5,57 5,07 4,17 3,28 2,57 2,42
2х200 54,23 24,48 15,47 11,27 9,09 6,50 5,45 5,08 4,31 3,54

Таблица примерного времени резерва

Необходимо 8 внешних аккумуляторов напряжением 12 Вольт

Емкость АКБ, Ач
500 1000 1500 2000 2500 3000
65 12ч 20мин 5ч 10мин 2ч 55мин 2ч 15мин 1ч 40мин 1ч 25мин
100 19ч 25мин 8ч 40мин 5ч 20мин 3ч 40мин 2ч 45мин 2ч 15мин
120 23ч 05мин 11ч 35мин 7ч 00мин 4ч 45мин 3ч 30мин 2ч 45мин
150 28ч 55мин 14ч 20мин 8ч 45мин 6ч 30мин 4ч 50мин 3ч 40мин
200 38ч 30мин 19ч 10мин 12ч 45мин 8ч 45мин 7ч 00мин 5ч 20мин


Линейка ИБП марок SKAT и TEPLOCOM обеспечивает возможность организации надёжного бесперебойного питания потребителей различной ёмкости и назначения. Бесперебойники дают возможность организовать бесперебойное питание от маленького котла отопления или циркуляционного насоса до питания всего дома или офиса. Специализированные ИБП дают возможность организации бесперебойного питания особо важных объектов, таких как системы связи, коммуникационное оборудование, системы безопасности и контроля.

Для увеличения времени резерва питания полезной нагрузки есть несколько путей. Все эти способы вытекают из формулы расчета времени резерва.

Для увеличения времени резерва можно увеличить ёмкость внешних АКБ, уменьшить полезную нагрузку, создать оптимальные условия эксплуатации ИБП и аккумуляторных батарей.

Первый вариант - самый простой, но затратный. Для увеличения ёмкости батарей придется покупать более дорогие аккумуляторы и ИБП, позволяющие производить их эффективный заряд. Кроме затрат на оборудование потребуется и выделение специального помещения, предназначенного для хранения и работы аккумуляторных батарей, снабженного хорошей системой вентиляции.

Второй метод - уменьшить нагрузку. Прежде всего нужно разбить нагрузку на группы в зависимости от необходимости обеспечения бесперебойного питания. Если электроэнергии не будет длительное время, то нужно будет выбирать между важностью обеспечения работы инженерных систем отопления, водоснабжения и необходимостью пользоваться холодильником или кондиционером. Так современный холодильник позволяет обеспечить приемлемую температуру около 20 часов, если его лишний раз не открывать. Еще одной группой потребителей является система освещения, для освещения можно использовать автономные источники бесперебойного питания или аварийные светильники со встроенной аккумуляторной батареей. В конечном счёте можно посидеть и при свете фонарика или старой доброй свечи, всё лучше, чем разморозить систему отопления.

Третий метод заключается в повышении качества обслуживания ИБП и батарей. Здесь наиболее важными моментами являются содержание оборудования в чистоте, обеспечение хорошего температурного режима. Отдельно стоит отметить необходимость проведения правильного заряда АКБ и проведения тренировок аккумуляторов. Часто бывает так, что проблем с электричеством нет, и аккумуляторы не подвергаются циклам разряда и заряда. В результате через несколько месяцев резко падает реальная ёмкость АКБ. Для тренировки АКБ необходимо использовать специальное оборудование или имитировать периодически отключение электроэнергии, давая возможность батареям работать.


Какое время разряда аккумулятора - это интересует многих автовладельцев. Особенно если с утра обнаружилось, что забыл выключить свет, а при попытках запуска двигателя выясняется – батарея полностью посажена. Вот тогда-то и возникает вопрос: «могла ли лампочка освещения салона или габаритного света посадить аккумулятор или это какая-то ?». Забегая наперед, ответ однозначный – конечно могла, особенно если это зима и у АКБ не было 100% заряда.

Чтобы не завестись буквально через день, достаточно всего лишь иметь утечку тока 100 и более миллиампер, что уж и говорить об источнике потребление в 400-700 мА. Убедится в этом можно подсчитав номинальное время разряда аккумулятора автомобиля. Формула расчета имеет такой вид:

T=Ёмкость (АКб) / Ток потребителя

Наш онлайн калькулятор позволит рассчитать на сколько хватит аккумулятора при включенном источнике потребления тока, когда вы его случайно забыли или намеренно оставили работать. Расчет будет произведен с учётом номинальной ёмкости аккумулятора, мощности потребителя и естественной утечке тока в состоянии покоя.

При малых токах потребления, емкий аккумулятор может обеспечить большее время работы. Естественно, чем больше емкость аккумулятора, тем больше время работы, но и заряжать генератору тогда придется дольше. А значит, поездка на короткую дистанцию не позволит ему быстро восстановится. В зимнее время это может привести к .

Время разряда аккумулятора

Как посчитать время разряда аккумулятора можно понять разобрав конкретный пример. Допустим, в бортовой сети автомобиля включен потребитель мощностью 120 Ватт. По закону Ома можно подсчитать, что в час он высасывает из аккумулятора 10А. То-есть, если в машине стоит батарея на 55 Ач, то полный её разряд наступит не более чем через 5,5 часов. Но это лишь приблизительное вычисление, так как есть еще другие факторы, которые будут влиять на потребление тока. Заметим, что для того, чтобы машина не завелась, достаточно 15-25% остатка, а это часа 4.

Таблица времени разряда батареи при минимальном потреблении:

Процент разряженности (%) 10 20 30 40 50 60 70 80 90 100
Время разряда (ч) * 7 14 20 26 32 39 45 52 58 64

*Для расчета были взяты минимальные значения утечки тока в 20 мА и мощность автомобильной лампы 10W от АКБ емкостью 55Ah.

Те данные о 20 часах работы аккумулятора, что указаны на его этикетке, заложены в расчете на ток равный 0,05 от ее емкости.

Допустимый разряд аккумулятора

Допустимый разряд автомобильного аккумулятора до 30% от первоначальной емкости (напряжение не ниже 11,8В). Заметьте, что при таком уровне можно запустить двигатель лишь при плюсовой температуре. В зимнее время не допускайте даже 50% процентной разряженности (12,1V).

Как пользоваться калькулятором расчета времени разряда

Используя элементарную формулу, можно посчитать на сколько хватит аккумулятора и на обычном калькуляторе, но нужно знать точное значение мощности потребления, а также добавить к нему утечку. Поэтому, куда быстрее можно узнать время разряда аккумулятора в зависимости от тока нагрузки, отметив галочками нужные потребители. Для подсчета нужно:

  1. В поле «Емкость АКБ» указать номинал батареи.
  2. В ячейке « », можно указать как среднестатистическую – 25-35 мА, так и проверив мультиметром. Чтобы посчитать допустимое значение, воспользуйтесь . Который, в зависимости от того, какие у вас имеются потребители – покажет предполагаемое нормальное значение утечки в состоянии покоя.
  3. Отметьте галочками (выберите из списка) необходимые потребители, включение которых повлекло разряд (или есть потребность посчитать время работы АКБ). Мощность ламп рассчитана на стандартный номинал.
  4. В поле «Мощность потребителя» цифра будет меняться в зависимости от выбранных источников. Либо можно ввести самостоятельно известное число в ваттах либо силе тока – амперах.
  5. По нажатию кнопки «Рассчитать » вы получите результат времени в часах.

Данный расчёт времени разряда АКБ является ориентировочным, так как в полной мере химические и электрические процессы в аккумуляторе не поддаются строгому математическому анализу.

Для справки, какую мощность имеет тот или иной потребитель, можно взять данные из таблицы.

Таблица потребителей тока в автомобиле

Потребитель Мощность (Вт) Требуемый ток (А)
Передние габариты 5 x2 1-2
Фары дальнего/ближнего света 55 x2 7-10
ПТФ 55 x2 7-10
Задняя противотуманная лампа 21 x2 2–3,5
Стояночные огни 5 x2 1-2
Задние габариты 5 x2 1-2
Подсветка номера 2 0,17
Стоп-сигнал 5 x2 1-2
Аудиосистема 5-25 0,5-2
Стеклоочистители 60 5
Обогрев стекла 120 5-10
Подогрев сидений 85-160 7-14
Вентилятор печки 80-200 6-16
Автономный отопитель 60-120 5-10
Система зажигания 20 2-4
Управление двигателем (ЭБУ) 10 1-2

Прежде, чем описывать калькулятор, мы рассмотрим терминологию, относящуюся к химическим источникам тока. Это связано с тем, непоследовательностью и противоречивостью терминологии в этой области.

Терминология

Одиночный элемент питания - электрохимический источник тока, состоящий из корпуса с электродами и активной массой. Элементы питания применяются для питания портативных устройств, например, электрических фонариков. Обычно элементы питания имеют напряжение 1–3 В, в зависимости от типа химической реакции в них. Примерами являются элементы питания (разговорное - батарейки) типов AAA, AA, C, D.

Батарея - группа соединенных последовательно или параллельно и расположенных в едином корпусе одиночных гальванических элементов, аккумуляторных элементов и иных электрохимических источников питания, предназначенных для питания различных устройств. Например, автомобильная аккумуляторная батарея напряжением 12 В и емкостью 45 А·ч, состоящая из шести аккумуляторных элементов напряжением 2 В и емкостью 45 А·ч.
Батарейка - разговорное название одиночных гальванических или аккумуляторных элементов, обычно небольшого размера, а также батарей из них, например, 9-вольтовая батарейка «Крона» (шесть последовательно соединенных гальванических элементов), пальчиковая батарейка (один гальванический элемент).

Блок (также группа или банк) батарей или элементов - несколько соединенных последовательно или параллельно электрохимических источников питания в виде батарей или отдельных элементов, не имеющих общего корпуса и используемых для аварийного электропитания различного оборудования. Примером блока батарей является блок из двух аккумуляторных батарей напряжением 12 В и емкостью 8 А·ч в блоке бесперебойного питания. Подробнее о параллельном и последовательном соединении элементов питания и батарей - в конце этой статьи.

Формулы и определения

Одиночная батарея (элемент)

Указанные ниже формулы определяют взаимоотношения между током, который батарея отдает в нагрузку, ее емкостью и относительной скоростью разряда :

I bat - ток в амперах, отдаваемый в нагрузку одной батареей,

C bat - номинальная емкость батареи в ампер-часах (означает произведение амперов на часы), которая обычно маркируется на батарее, и

C rate - относительная скорость разряда батареи, определяемая как разрядный ток, деленный на теоретический ток, которые батарея может отдавать в течение одного часа и при этом будет полностью израсходована ее емкость.

Время работы t и относительная скорость разряда батареи (C-rate) связаны обратной пропорциональной зависимостью:

Отметим, что это теоретическое время работы . В связи с разнообразными внешними факторами, реальное время работы будет примерно на 30% меньше рассчитанного по этой формуле. Следует также учесть, что допустимая глубина разряда батареи еще больше ограничивает время ее работы.

Номинальная запасаемая в батарее энергия в ватт-часах рассчитывается по формуле

E bat - номинальная запасаемая в батарее энергия в ватт-часах,

V bat - номинальное напряжение батареи в вольтах

C bat - номинальная емкость батареи в ампер-часах (А·ч)

Энергия в джоулях (ватт-секундах, Вт-с) рассчитывается по формуле

Известно, что при силе тока в один ампер через поперечное сечение проводника в одну секунду проходит заряд в один кулон. Следовательно, заряд батареи определяется из выражения Q = I · t с учетом известной емкости батареи в ампер-часах, которая определяет ток, отдаваемый батареей в нагрузку в течение 3600 секунд:

Q bat - заряд батареи в кулонах (К) и

C bat - номинальная емкость батареи в ампер-часах.

Блок батарей

Номинальное напряжение блока батарей в вольтах определяется по формуле

V bat - номинальное напряжение батареи в вольтах,

V bank - номинальное напряжение блока батарей в вольтах

N s - количество батарей в одной из нескольких групп последовательно соединенных батарей

Емкость блока батарей в ампер-часах, C bank определяется по формуле

Номинальная энергия в ватт-часах E bank , хранящаяся в блоке батарей, определяется по формуле

E bat - номинальная энергия одной батареи,

N s - количество батарей в группе последовательно соединенных батарей и

N p - количество групп соединенных последовательно батарей, соединенных параллельно

Энергия в джоулях рассчитывается по формуле:

Здесь E bank, Wh - номинальная энергия блока батарей в ватт-часах.

Заряд в кулонах блока батарей Q bank определяется как сумма зарядов всех батарей в блоке:

Ток разряда блока батарей I bank рассчитывается по формуле:

Время работы блока батарей t bank определяется по формуле:

Характеристики батарей

При выборе батареи учитываются следующие характеристики:

  • Тип батареи (элемента)
  • Тип химической реакции батареи (элемента)
  • Напряжение
  • Емкость
  • Относительная скорость разряда
  • Допустимая глубина разряда
  • Зависимость емкости от относительной скорости разряда
  • Удельная энергоемкость (на единицу веса)
  • Энергоемкость (на единицу объема)
  • Удельная мощность (на единицу веса)
  • Диапазон рабочих температур
  • Допустимая глубина разряда
  • Размер и вес

Ниже рассматриваются некоторые из этих характеристик.

Тип батареи

Существуют две основные категории элементов питания и батарей: первичные (одноразовые) и вторичные (аккумуляторы с возможностью перезарядки).

Первичные источники тока

Это химические источники тока без надежной возможности их перезарядки. После использования такие источники утилизируют. Примером первичных источников тока являются марганцево-цинковые с угольным стержнем (солевые) и щелочные элементы.

Вторичные источники тока

Вторичные источники тока (элементы или батареи) - аккумуляторы, которые рассчитаны на большое количество перезарядок (до 1000 раз). В них энергия электрического тока превращается в химическую энергию, которая накапливается и в дальнейшем может быть снова преобразована в электрический ток. Самый известный и старый тип аккумуляторов - свинцовый или кислотный. Другими распространенными аккумуляторами являются никель-кадмиевые (NiCd), никель-металлгидридные (NiMH), литий-ионные (Li-Ion) и литий-полимерные (LiPo) аккумуляторы.

Удельная энергоемкость (на единицу веса) и плотность энергии на единицу объема

Удельная энергоемкость на единицу веса батареи измеряется в единицах энергии на единицу массы. В СИ она измеряется в джоулях на килограмм (Дж/кг). Для аккумуляторов обычно используются ватты на кг (Вт/кг). Плотность энергии на единицу объема - это количество энергии, запасенной в батарее на единицу ее объема. Измеряется в ватт-часах на литр (Вт-ч/л).

К сожалению, удельная энергоемкость батарей относительно невелика, если сравнивать ее с энергоемкостью бензина. В то же время, удельная энергоемкость недавно разработанных литий-ионных аккумуляторов в четыре раза выше свинцовых. Электромобили с такими аккумуляторами уже достаточно удобны для ежедневного использования. Литий-полимерные батареи имеют самую высокую удельную энергоемкость и поэтому широко используются на летательных аппаратах с дистанционным управлением (дронах).

Тип химической реакции батареи

Щелочные батареи

Несмотря на то, что щелочные элементы питания появились более 100 лет назад, это наиболее распространенный тип одноразовых портативных источников питания. Номинальное напряжение щелочного элемента составляет 1,5 В, а емкость щелочного элемента типа АА достигает 1800–2600 мА·ч. Если объединить несколько таких элементов в один корпус, можно получить батарею на 4,5 В (из трех элементов), 6 В (из четырех элементов) и 9 В (из шести элементов). Батареи на 9 В (типа «Крона» - по названию выпускаемых в СССР угольно-цинковых батарей), разработанные для первых транзисторных радиоприемников, теперь используются для переносных радиостанций, детекторов дыма и пультов дистанционного управления моделями. Их емкость очень мала, всего около 500 мА·ч. Удельная энергоемкость щелочных элементов 110–160 Вт-ч/кг.

Марганцево-цинковые батареи

Марганцево-цинковые (также угольно-цинковые или солевые) первичные элементы питания были изобретены в 1886 г. и все еще используются сегодня. Номинальное напряжение такого элемента - 1,5 В, емкость элемента типа АА - 400–1700 мА·ч. Марганцево-цинковые элементы и батареи выпускаются тех же типоразмеров, что и щелочные. Их удельная энергоемкость составляет 33–42 Вт-ч/кг, то есть примерно втрое ниже энергоемкости щелочных элементов питания. Из-за невысокой энергоемкости их используют только там, где не требуется отдавать в нагрузку большой ток или если устройства используются не часто, например, в пультах управления или часах.

Кислотные аккумуляторные батареи

Кислотные (или свинцовые) аккумуляторные батареи недороги, доступны и широко используются в автомобилях, другой технике, в источниках бесперебойного питания и другой аппаратуре. Напряжение на кислотном элементе – 2 В. В батарее обычно бывает 3, 6 или 12 элементов, что позволяет получить 6,12 и 24 В соответственно. Свинцовые аккумуляторы удобны в тех случаях, если их большой вес не имеет значения. Удельная энергоемкость свинцовых аккумуляторов 33–42 Вт-ч/кг.

Никель-кадмиевые аккумуляторные батареи

Никель-кадмиевые (NiCd) аккумуляторные батареи (вторичные) изобрели более 100 лет назад и только в конце 90-х гг. прошлого века вместо них начали широко применяться никель-металлгидридные и литий-ионные аккумуляторы. Напряжение никель-кадмиевого элемента 1,2 В, удельная энергоемкость 40–60 Вт-ч/кг.

Никель-металлгидридные аккумуляторы

Никель-металлгидридные аккумуляторы (вторичные) были изобретены относительно недавно - в 1967 г. Их объемная энергоемкость намного выше намного выше, чем у никель-кадмиевых аккумуляторов, и приближается к энергоемкости литий-ионных аккумуляторов. Номинальное напряжение элемента - 1,2 В, удельная энергоемкость - 60–120 Вт-ч/кг. Удельная мощность NiMH аккумуляторов 250–1000 Вт/кг также намного выше, чем у никель-кадмиевых аккумуляторов (150 Вт/кг).

Литий-полимерные аккумуляторы

В литий-ионных полимерных (или литий-полимерных, LiPo) аккумуляторах используется желеобразный полимерный электролит. В связи с их высокой удельной энергоемкостью 100–265 Вт-ч/кг, они используются в тех случаях, когда малый вес является основным фактором. Сюда относятся мобильные телефоны, летательные аппараты с дистанционным управлением (дроны) и планшетные компьютеры. В связи с их высокой удельной энергоемкостью, LiPo аккумуляторы при перегреве и избыточном заряде подвержены тепловому разгону , который может привести к утечке электролита, взрыву и пожару. Также при эксплуатации необходимо учитывать, что эти батареи расширяются при хранении в полностью заряженном состоянии, что может привести к появлению трещин в корпусе устройства, в котором они установлены.

Литий-железо-фосфатные аккумуляторы

Литий-железо-фосфатные аккумуляторы (вторичные источники питания, LiFePO₄) - это литий-ионные аккумуляторы, в которых в качестве катода используется фосфат лития-железа LiFePO₄, а в качестве анода - графитовый электрод с металлической сеткой. Это относительно новая технология, разработанная в начале 2000-х гг., имеет ряд преимуществ и недостатков по сравнению с традиционными литий-ионными аккумуляторами. Напряжение на элементе составляет 3,2 В и, поскольку оно весьма высокое по сравнению с другими типами химических реакций литий-ионной технологии, для получения номинального напряжения 12,8 В нужно всего четыре элемента. В процессе разряда, напряжение на этих аккумуляторах весьма стабильно, что позволяет получать от батареи почти полную мощность в процессе ее разряда. Аккумуляторы LiFePO₄ имеют удельную энергоемкость 90–110 Вт-ч/кг. Литий-железо-фосфатные аккумуляторы используются в электрических велосипедах, электромобилях, фонарях на солнечных батареях, в электронных сигаретах и фонарях. Литий-железо-фосфатный аккумулятор типоразмера 14500 имеет те же геометрические размеры, что аккумулятор типа АА. Однако его напряжение 3,2 В.

Напряжение батареи

Напряжение батареи определяется типом химического процесса, используемого в элементах, а также количеством элементов, соединенных последовательно. Ниже в таблице показаны напряжения различных первичных и вторичных элементов.

Если батарея из гальванических элементов изготовлена из нескольких элементов, соединенных последовательно, ее напряжение может быть 4,5 В, 12 В, 24 В, 48 В и др.

Емкость батареи

Емкость батареи - это количество электричества (заряд), который батарея может использовать для создания электрического тока в нагрузке при номинальном напряжении на ней. Отметим, что емкость батареи и электрическая емкость - это разные физические величины. Емкость батарей можно измерить в единицах электрического заряда - кулонах (Кл), а емкость конденсатора в единицах электрической емкости - фарадах (1 Ф = 1 Кл/В). Однако на практике емкость батарей удобнее измерять в ампер-часах (А-ч или А·ч) или миллиампер-часах (мА-ч или мА·ч, 1 мА·ч = 1000 А·ч). Эта единица не учитывает напряжение на аккумуляторе или элементе питания, однако она удобна с учетом того, что элементы с одним типом химической реакции всегда имеют одно напряжение. Номинальная емкость батареи часто выражается в виде произведения 20 часов на величину тока, который свежезаряженная батарея способна отдавать в нагрузку в течение 20 часов при комнатной температуре. Реальная (не номинальная) емкость любой батареи зависит от нагрузки, то есть, от тока, который батарея отдает в нагрузку, или от относительной скорости ее разряда. Чем выше скорость разряда, тем ниже реальная емкость батареи.

Емкость батареи можно измерить также в единицах энергии - ватт-часах (Вт-ч или Вт·ч). Счетчик в вашей квартире измеряет израсходованную электроэнергию в киловатт-часах (кВт-ч), то есть почти в таких же единицах, только в тысячу раз больших. 1 кВт-ч = 1000 Вт-ч. Чтобы получить емкость батареи в единицах энергии нужно умножить емкость в ампер-часах на номинальное напряжение. Например, батарея 12 В 8 А·ч, которая часто используется в небольших источниках бесперебойного питания, может хранить 12 · 8 = 96 Вт-ч энергии.

В приведенной ниже таблице показана номинальная емкость гальванических элементов питания напряжением 1,5 В и аккумуляторов напряжением 1,2 В типа АА:

Относительная скорость разряда батареи

Относительная скорость разряда батареи (англ. С-rate, C-rating) определяется как ток разряда, деленный на теоретический ток, при котором в течение одного часа будет полностью израсходована номинальная емкость батареи. Это безразмерная величина, обозначаемая буквой C (от англ. charge - заряд). Например, батарея с номинальной емкостью C bat = 8 А·ч, при разряде со скоростью 2C израсходует свою номинальную емкость для создания в нагрузке тока I bat =16 A в течение 0,5 часа. Разряд 1С для той же батареи означает, что она израсходует свою номинальную емкость для создания в нагрузке тока I bat = 8 A в течение одного часа. Отметим, что относительная скорость разряда является безразмерной величиной, несмотря на то, что C bat выражается в ампер-часах, а I bat - в амперах. Отметим также, что батарея отдаст в нагрузку меньше энергии при разряде с большей скоростью.

Глубина разряда батареи

Сохраняемая в батарее полная энергия часто не может быть использована полностью без повреждения батареи. Допустимая глубина разряда батареи (англ. DOD - depth of discharge) иногда указывается в ее технических характеристиках и определяет процент энергии, который может быть получен от батареи. Например, свинцовые кислотные аккумуляторы, предназначенные для запуска двигателя автомобиля, не рассчитаны на глубокий разряд большим стартерным током, который может легко их повредить. Тонкие пластины, установленные в таких аккумуляторах, позволяющие достичь высокой площади поверхности электродов, а, следовательно, максимального тока, могут быть легко повреждены при глубоком разряде, особенно если такой разряд большим стартерным током часто повторяется. Некоторые батареи по техническим условиям могут быть разряжены только на 30%. Это означает, что только 30% их емкости можно использовать для питания нагрузки.

В то же время, выпускаются свинцовые аккумуляторы с более толстыми пластинами, которые рассчитаны на регулярный заряд–разряд. Именно такие батареи используются в солнечных батареях и в электромобилях.

Последовательное и параллельное соединение элементов питания и батарей в блоки батарей

Блоки батарей используются, если необходимо соединить несколько батарей для одной цели. В результате соединения батарей в блок можно увеличить напряжение, отдаваемый в нагрузку ток или и то, и другое. Для соединения батарей в блок используют три метода соединения:

  • Параллельное
  • Последовательное
  • Последовательное и параллельное

При объединении батарей в блок нужно учитывать несколько важных вещей. В блоке батарей нужно использовать не просто батареи одинаковой емкости и типа, но батареи, выпущенные одним изготовителем и взятые из одной партии. Конечно, нельзя соединять вместе батареи с разными типами химической реакции. Разные батареи, соединенные вместе, будут работать некоторое время, однако срок их службы резко сокращается. Если емкости батарей различны, одна батарея будет разряжаться быстрее, чем другая, что опять же приведет к сокращению срока их службы.

При последовательном соединении батарей в блок общее напряжение является суммой напряжений отдельных батарей, а емкость в ампер-часах остается равной емкости одной батареи. Например, можно последовательно соединить две батареи напряжением 12 В и емкостью 10 А·ч. При этом общая емкость будет равна тем же 10 А·ч, однако напряжение удвоится и станет равно 24 В. При последовательном соединении, коротким толстым проводом-перемычкой соединяют отрицательный вывод первой батареи с положительным выводом второй батареи, отрицательный вывод второй батареи с положительным выводом третьей батареи и так далее. Затем крайние выводы блока (один - положительный, другой - отрицательный) присоединяются к нагрузке.

При параллельном соединении батарей в блок , их напряжение остается равным напряжению одной батареи, а емкость и максимальный ток в нагрузке увеличиваются. Для подключения батарей параллельно, соедините толстыми проводами-перемычками все положительные выводы, а также все отрицательные выводы - положительный к положительному, отрицательный к отрицательному. Для выравнивания нагрузки, присоедините положительный вывод нагрузки к выводу блока батарей с одного конца, а отрицательный - к выводу блока батарей с другого конца. Например, можно таким образом параллельно соединить две 12-вольтовые батареи емкостью 10 А·ч. Полученный блок батарей будет иметь общую емкость 20 А·ч при напряжении 12 В.

Если нужно увеличить сразу и емкость, и напряжение, можно использовать параллельно-последовательное соединение . Например, если имеется шесть идентичных батарей емкостью 10 А·ч и напряжением 12 В, можно соединить две группы по три батареи последовательно, а затем эти две группы соединить параллельно. Новый блок батарей будет иметь емкость 20 А·ч при напряжении 36 В.

Похожие публикации