Преобразователь напряжения 1 5в для светодиодного фонарика. Блокинг генератор для светодиода на одном транзисторе своими руками: схема с самозапиткой

В жизни каждого человека бывают моменты, когда необходимо наличие освещения, а электричества нет. Это может быть и банальное отключение электроэнергии, и необходимость ремонта проводки в доме, а возможно, и лесной поход или что-либо подобное.

И, конечно же, все знают, что в таком случае выручит только электрический фонарик – компактное и в то же время функциональное устройство. Сейчас на рынке электротехники множество различных видов данного товара. Это и обычные фонари с лампами накаливания, и светодиодные, с аккумуляторами и батарейками. Да и фирм, производящих эти приборы, великое множество – «Дик», «Люкс», «Космос» и т. п.

А вот каков принцип его работы, задумываются не многие. А между тем, зная устройство и схему электрического фонарика, можно при необходимости его починить или вообще собрать собственными руками. Вот в этом вопросе и попробуем разобраться.

Простейшие фонари

Так как фонарики бывают разные, то имеет смысл начать с самого простого – с батарейкой и лампой накаливания, а также рассмотреть его возможные неисправности. Схема подобного прибора элементарна.

По сути, в нем нет ничего, кроме батарейки, кнопки включения и лампочки. А потому и проблем с ним особых не бывает. Вот несколько возможных мелких неприятностей, которые могут повлечь за собой отказ такого фонаря:

  • Окисление любого из контактов. Это могут быть контакты выключателя, лампочки или батареи. Нужно просто почистить эти элементы схемы, и приборчик снова заработает.
  • Сгорание лампы накаливания – тут все просто, замена светового элемента решит эту проблему.
  • Полный разряд батареек – замена элементов питания на новые (либо зарядка, если они аккумуляторные).
  • Отсутствие контакта или перелом провода. Если фонарик уже не новый, в таком случае есть смысл поменять все провода. Сделать это совершенно не сложно.

Фонарик на светодиодах

Этот вид фонарей отличается более мощным световым потоком и при этом потребляет очень мало энергии, а значит, и элементы питания в нем прослужат дольше. Все дело в конструкции световых элементов – в светодиодах отсутствует нить накаливания, они не расходуют энергию на нагрев, ввиду этого коэффициент полезного действия таких приборов выше на 80–85%. Также велика роль дополнительного оборудования в виде преобразователя с участием транзистора, резистора и высокочастотного трансформатора.

Если аккумулятор фонарика встроенный, то с ним в комплекте обязательно идет и зарядное устройство.

Схема подобного фонаря состоит из одного или нескольких светодиодов, преобразователя напряжения, выключателя и элемента питания. В более ранних моделях фонариков количество потребления энергии светодиодами должно было соответствовать вырабатываемому источником.

Сейчас эта проблема решена при помощи преобразователя напряжения (его также называют умножителем). Собственно, он-то и является главной деталью, которую содержит электрическая схема фонарика.


При желании сделать такой прибор своими руками особых сложностей не возникнет. Транзистор, резистор и диоды – не проблема. Самым непростым моментом будет намотка высокочастотного трансформатора на ферритовом кольце, который называется блокинг-генератор.

Но и с этим можно справиться, взяв подобное колечко из неисправного электронного пускорегулирующего аппарата энергосберегающей лампы. Хотя, конечно, если не хочется возиться или нет времени, то в продаже можно найти высокоэффективные преобразователи, такие как 8115. С их помощью, при применении транзистора и резистора, и стало возможным изготовление светодиодного фонарика на одной батарейке.

Сама же схема светодиодного фонаря подобна простейшему прибору, и на ней останавливаться не стоит, т. к. собрать ее способен даже ребенок.

Кстати, при применении в схеме преобразователя напряжения на старом, простейшем фонаре, работающем от квадратной батареи в 4.5 вольт, которую сейчас уже не купить, можно будет спокойно ставить элемент питания в 1.5 вольт, т. е. обычную «пальчиковую» или «мизинчиковую» батарею. Никакой потери в световом потоке наблюдаться не будет. Основная задача при этом – иметь хотя бы малейшее представление о радиотехнике, буквально на уровне знания, что такое транзистор, а также уметь держать в руках паяльник.

Доработка китайских фонариков

Иногда бывает так, что купленный (с виду вполне качественный) фонарик с аккумулятором полностью отказывает. И вовсе не обязательно покупатель виноват в неправильной эксплуатации, хотя и это тоже встречается. Чаще – это ошибка при сборке китайского фонарика в погоне за количеством в ущерб качеству.

Конечно, в таком случае придется его переделать, как-то модернизировать, ведь потрачены деньги. Сейчас необходимо понять, как это сделать и возможно ли побороться с китайским производителем и выполнить ремонт такого прибора самостоятельно.

Рассматривая наиболее часто встречающийся вариант, при котором при включении прибора в сеть индикатор зарядки светится, но фонарь не заряжается и не работает, можно заметить вот что.

Обычная ошибка производителя – индикатор заряда (светодиод) включается в цепь параллельно с аккумулятором, чего допускать никак нельзя. При этом покупатель включает фонарь, и видя, что тот не горит, снова подает питание на заряд. В результате – перегорание всех светодиодов разом.

Дело в том, что не все производители указывают, что заряжать подобные устройства с включенными светодиодами нельзя, т. к. отремонтировать их будет невозможно, останется только заменить.

Итак, задача по модернизации – подключить индикатор заряда последовательно с аккумулятором.


Как видно из схемы, эта проблема вполне решаема.

А вот если китайцы в свое изделие поставили резистор 0118, то светодиоды придется менять постоянно, т. к. ток, поступающий на них, будет очень высоким, и какие бы световые элементы ни были установлены – они не выдерживают нагрузки.

Налобный светодиодный фонарь

В последние годы подобный световой прибор получил достаточно широкое распространение. Действительно, ведь очень удобно, когда руки свободны, а луч света бьет туда, куда смотрит человек, в этом как раз главное преимущество налобного фонарика. Раньше таким могли похвастаться только шахтеры, да и то для его ношения нужна была каска, на которую фонарь, собственно, и крепился.

Сейчас же крепление подобного прибора удобно, носить его можно при любых обстоятельствах, да и на поясе не висит довольно объемный и тяжелый аккумулятор, который, к тому же, еще и обязательно нужно раз в сутки заряжать. Современный намного меньше и легче, притом имеет очень маленькое энергопотребление.

Так что же представляет собой подобный фонарь? А принцип его работы нисколько не отличается от светодиодного. Варианты исполнения такие же – аккумуляторный или со съемными элементами питания. Количество светодиодов варьируется от 3 до 24 в зависимости от характеристик батареи и преобразователя.

К тому же обычно такие фонари имеют 4 режима свечения, а не один. Это слабый, средний, сильный и сигнальный – когда светодиоды моргают через короткие промежутки времени.


Режимами налобного светодиодного фонарика управляет микроконтроллер. Причем при его наличии возможен даже режим стробоскопа. К тому же светодиодам это совсем не вредит, в отличие от ламп накаливания, т. к. их срок службы не зависит от количества циклов включения-выключения по причине отсутствия нити накаливания.

Так какой же фонарь выбрать?

Конечно, фонарики могут быть различными и по потребляемому напряжению (от 1.5 до 12 В), и с различными выключателями (сенсорный или механический), с наличием звукового оповещения о разряде батареи. Это может быть оригинал или его аналоги. Да и не всегда можно определить, что же за прибор перед глазами. Ведь пока он не выйдет из строя и не начнется его ремонт, нельзя увидеть, какая в нем стоит микросхема или транзистор. Наверное, лучше выбирать тот, который нравится, а возможные проблемы решать уже по мере поступления.

Блокинг – генератор представляет собой генератор кратковременных импульсов повторяющихся через довольно большие промежутки времени.

Одним из достоинств блокинг - генераторов являются сравнительная простота, возможность подключения нагрузки через трансформатор, высокий КПД, подключения достаточно мощной нагрузки.

Блокинг-генераторы очень часто используются в радиолюбительских схемах. Но мы будем запускать от этого генератора светодиод.

Очень часто в походе, на рыбалке или охоте нужен фонарик. Но не всегда под рукой есть аккумулятор или батарейки 3В. Данная схема может запустить светодиод на полную мощность от почти разряженной батарейки.

Немного о схеме. Детали: транзистор можно использовать любой (n-p-n или p-n-p) в моей схеме КТ315Г.

Резистор нужно подбирать, но об этом потом.

Кольцо ферритовое не очень большое.

И диод высокочастотный с низким падением напряжения.

Итак, убирался я в ящике в столе и нашел старый фонарик с лампочкой накаливания, конечно же, сгоревшей, а недавно видел схему этого генератора.

И решил я спаять схему и засунуть в фонарик.

Ну-с приступим:

Для начала соберем по этой схеме.

Берем ферритовое кольцо (я вытащил из балласта люминесцентной лампы) И мотаем 10 витков проводом 0,5-0,3мм (можно и тоньше, но не удобно будет). Намотали, делаем петельку, ну или отвод, и мотаем еще 10 витков.

Теперь берем транзистор КТ315, светодиод и наш трансформатор. Собираем по схеме (см. выше). Я поставил еще конденсатор параллельно с диодом, так ярче светилось.

Вот и собрали. Если светодиод не горит, поменяете полярность батарейки. Все равно не горит, проверьте правильность подключения светодиода и транзистора. Если все правильно и все равно не горит, значит не правильно намотан трансформатор. Если честно у меня тоже схема завелась далеко не с первого раза.

Теперь дополняем схему остальными деталями.

Поставив диод VD1 и конденсатор С1 светодиод засветится ярче.

Последний этап - подборка резистора. Вместо постоянного резистора ставим переменный на 1,5кОма. И начинаем крутить. Нужно найти то место где светодиод светит ярче, при этом надо найти место где если увеличить сопротивление хоть чуть-чуть светодиод гаснет. В моем случае это 471Ом.

Ну ладно, теперь ближе к делу))

Разбираем фонарик

Вырезаем из одностороннего тонкого стеклотекстолита кружок под размер трубки фонарика.

Теперь идем и ищем детали нужных номиналов размером несколько миллиметров. Транзистор КТ315

Теперь размечаем плату и разрезаем фольгу канцелярским ножом.

Лудим плату

Исправляем косяки, если таковы имеются.

Теперь чтобы паять плату нам нужно специальное жало, если нет - не беда. Берем проволоку 1-1,5мм толщиной. Тщательно зачищаем.

Теперь наматываем на имеющийся паяльник. Конец проволоки можно заострить и залудить.

Ну-с приступим припаивать детали.

Можно воспользоваться лупой.

Ну, вроде все припаяли, кроме конденсатора, светодиода и трансформатора.

Теперь тест-запуск. Все эти детали (не припаивая) прицепляем на «сопли»

Ура!! Получилось. Теперь можно не опасаясь все детали припаивать нормально

Мне вдруг стало интересно, какое же напряжение на выходе, я измерил

http://electro-tehnyk. *****/docs/led_lait. htm

Светодиодный фонарик с 3-х вольтовым конвертором для светодиода 0.3-1.5V 0.3-1.5 V LED FlashLight

Обычно, для работы синего или белого светодиода требуется 3 - 3,5v, данная схема позволяет запитать синий или белый светодиод низким напряжением от одной пальчиковой батарейки. Normally, if you want to light up a blue or white LED you need to provide it with V, like from a 3 V lithium coin cell.

Детали:
Светодиод
Ферритовое кольцо (диаметром ~10 мм)
Провод для намотки (20 см)
Резистор на 1кОм
N-P-N транзистор
Батарейка

Параметры используемого трансформатора:
Обмотка, идущая на светодиод, имеет ~45 витков, намотанных проводом 0.25мм.
Обмотка, идущая на базу транзистора, имеет ~30 витков провода 0.1мм.
Базовый резистор в этом случае имеет сопротивление около 2К.
Вместо R1 желательно поставить подстроечный резистор, и добиться тока через диод ~22мА, при свежей батарейке измерить его сопротивление, заменив потом его постоянным резистором полученного номинала.

Собранная схема обязана работать сразу.
Возможны только 2 причины, по которым схема работать не будет.
1. перепутаны концы обмотки.
2. слишком мало витков базовой обмотки.
Генерация исчезает, при количестве витков <15.


Куски проводов сложить вместе и намотать на кольцо.
Соединить между собой два конца разных проводов.
Схему можно расположить внутри подходящего корпуса.
Внедрение такой схемы в фонарь, работающий от 3V существенно продлевает, продолжительность его работы от одного комплекта батареек.

Вариант исполнения фонаря от одной батарейки 1,5в.


Транзистор и сопротивление помещаются внутрь ферритового кольца



Белый светодиод работает от севшей батарейки ААА

Вариант модернизации «фонарик – ручка»

Возбуждение изображенного на схеме блокинг-генератора достигается трансформаторной связью на Т1. Импульсы напряжения, возникающие в правой (по схеме) обмотке складываются с напряжением источника питания и поступают на светодиод VD1. Конечно, можно было бы исключить конденсатор и резистор в цепи базы транзистора, но тогда возможен выход из строя VT1 и VD1 при использовании фирменных батарей с низким внутренним сопротивлением. Резистор задает режим работы транзистора, а конденсатор пропускает ВЧ составляющую.

В схеме использовался транзистор КТ315 (как самый дешевый, но можно и любой другой с граничной частотой от 200 МГц), сверхяркий светодиод. Для изготовления трансформатора потребуется кольцо из феррита (ориентировочный размер 10х6х3 и проницаемостью около 1000 HH). Диаметр проволоки около 0,2-0,3 мм. На кольцо наматываются две катушки по 20 витков в каждой.
Если нет кольца, то можно использовать аналогичный по объему и материалу цилиндр. Только придется мотать уже 60-100 витков для каждой из катушек.
Важный момент : мотать катушки нужно в разные стороны.

Фотографии фонарика:
выключатель находится в кнопке «авторучки », а серый металлический цилиндр проводит ток.

По типоразмеру батарейки делаем цилиндр.

Его можно изготовить из бумаги, или использовать отрезок любой жесткой трубки.
Проделываем отверстия по краям цилиндра, обматываем его залуженным проводом, пропускаем в отверстия концы проволоки. Фиксируем оба конца, но оставляем с одного из концов кусок проводника: чтобы можно было подсоединить преобразователь к спирали.
Кольцо из феррита не влезло бы в фонарь, поэтому использовался цилиндр из аналогичного материала.


Цилиндр из катушки индуктивности от старого телевизора.
Первая катушка - около 60 витков.
Потом вторая, мотается в обратную сторону опять 60 или около того. Витки скрепляются клеем.

Собираем преобразователь:

Все располагается внутри нашего корпуса: Распаиваем транзистор, конденсатор резистор, подпаиваем спираль на цилиндре, и катушку. Ток в обмотках катушки должен идти в разные стороны! То есть если вы мотали все обмотки в одну сторону, то поменяйте местами выводы одной из них, иначе генерация не возникнет.

Получилось следующее:


Все вставляем вовнутрь, а в качестве боковых заглушек и контактов используем гайки.
К одной из гаек подпаиваем выводы катушки, а к другой эмиттер VT1. Приклеиваем. маркируем выводы: там, где у нас будет вывод от катушек ставим « - », где вывод от транзистора с катушкой ставим «+» (чтобы было все как в батарейке).

Теперь следует изготовить «ламподиод».


Внимание: на цоколе должен быть минус светодиода.

Сборка:

Как понятно из рисунка, преобразователь представляет собой «заменитель» второй батарейки. Но в отличие от нее, он имеет три точки контакта: с плюсом батарейки, с плюсом светодиода, и общим корпусом (через спираль).

Его местоположение в батарейном отсеке является определенным: он должен контактировать с плюсом светодиода.

Схема светодиодного фонаря на DC/DC конверторе фирмы Analog Device - ADP1110.

Стандартная типовая схема включения ADP1110.
Данная микросхема-конвертер, согласно спецификации фирмы-производителя, выпускается в 8 вариантах:

Выходное напряжение

Регулируемое

Регулируемое

Микросхемы с индексами «N» и «R» отличаются только типом корпуса: R компактнее.
Если вы купили чип с индексом -3.3, можете пропускать следующий абзац и переходить к пункту «Детали».
Если нет - представляю вашему вниманию еще одну схему:


В ней добавлены две детали, позволяющие получить на выходе требуемые 3,3 вольта для питания светодиодов.
Схему можно улучшить, приняв во внимание, что для работы светодиодам нужен источник тока, а не напряжения. Изменения в схеме, что бы она выдавала 60мА (по 20 на каждый диод), а напряжение диоды нам выставят автоматически, те самые 3.3-3.9V.

резистор R1 служит для измерения тока. Преобразователь так устроен, что когда напряжение на выводе FB (Feed Back) превысит 0.22V, он закончит повышать напряжение и ток, значит номинал сопротивления R1 легко рассчитать R1 = 0.22В/Iн, в нашем случаи 3.6Ом. Такая схема помогает стабилизировать ток, и автоматически выбрать необходимое напряжение. К сожалению, на этом сопротивлении будет падать напряжение, что приведет к снижению КПД, однако, практика показала, что оно меньше чем превышение, которое мы выбрали в первом случаи. Я измерял выходное напряжение, и оно составило В. Параметры диодов в таком включении также должны быть по возможности одинаковыми, иначе суммарный ток в 60мА, распределился между ними не поровну, и мы опять, получим разную светимость.

Детали

1. Дроссель подойдет любой от 20 до 100 микрогенри с маленьким (меньше 0.4 Ома) сопротивлением. На схеме указано 47 мкГн. Его можно сделать самому - намотать около 40 витков провода ПЭВ-0.25 на кольце из µ-пермаллоя с проницаемостью порядка 50, типоразмера 10х4х5.
2. Диод Шоттки. 1N5818, 1N5819, 1N4148 или аналогичные. Analog Device НЕ РЕКОМЕНДУЕТ использовать 1N4001
3. Конденсаторы. 47-100 микрофарад на 6-10 вольт. Рекомендуется использовать танталовые.
4. Резисторы. Мощностью 0,125 ватта сопротивлением 2 Ома, возможно 300 ком и 2,2 ком.
5. Светодиоды. L-53PWC - 4 штуки.

Светодиодный фонарь
Преобразователь напряжения для питания светодиода DFL-OSPW5111Р белого свечения с яркостью 30 Кд при токе 80 мА и шириной диаграммы направленности излучения около 12°.


Ток, потребляемый от батареи напряжением 2,41V, - 143мА; при этом через светодиод протекает ток около 70 мА при напряжении на нем 4,17 В. Преобразователь работает на частоте 13 кГц, электрический КПД составляет около 0,85.
Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К10x6x3 из феррита 2000НМ.

Первичную и вторичную обмотки трансформатора наматывают одновременно (т. е. в четыре провода).
Первичная обмотка содержит - 2x41 витка провода ПЭВ-2 0,19,
Вторичная обмотка содержит - 2x44 витка провода ПЭВ-2 0,16.
После намотки выводы обмоток соединяют в соответствии со схемой.

Транзисторы КТ529А структуры p-n-p можно заменить на КТ530А структуры n-p-n, в этом случае необходимо изменить полярность подключения батареи GB1 и светодиода HL1.
Детали размещают на рефлекторе, используя навесной монтаж. Обратите внимание на то, чтобы был исключён контакт деталей с жестяной пластиной фонаря, подводящей «минус» батареи GB1. Транзисторы скрепляют между собой хомутом из тонкой латуни, который обеспечивает необходимый отвод тепла, и затем приклеивают к рефлектору. Светодиод размещают взамен лампы накаливания так, чтобы он выступал на 0,5... 1 мм из гнезда для её установки. Это улучшает отвод тепла от светодиода и упрощает его монтаж.
При первом включении питание от батареи подают через резистор сопротивлением 18...24 Ом чтобы не вывести из строя транзисторы при неправильном подключении выводов трансформатора Т1. Если светодиод не светит, необходимо поменять местами крайние выводы первичной или вторичной обмотки трансформатора. Если и это не приводит к успеху, проверяют исправность всех элементов и правильность монтажа.

Преобразователь напряжения для питания светодиодного фонаря промышленного образца.

Преобразователь напряжения для питания светодиодного фонаря
Схема взята из руководства фирмы Zetex по применению микросхем ZXSC310.
ZXSC310 - микросхема драйвера светодиодов.
FMMT 617 или FMMT 618.
Диод Шоттки - практически любой марки.
Конденсаторы C1 = 2.2 мкФ и C2 = 10 мкФ для поверхностного монтажа, 2.2 мкФ величина, рекомендованная производителем, а С2 можно поставить примерно от 1 до 10 мкФ

Катушка индуктивности 68 микрогенри на 0.4 А

Индуктивность и резистор устанавливают с одной стороны платы (где нет печати), все остальные детали - с другой. Единственную хитрость представляет изготовление резистора на 150 миллиом. Его можно сделать из железной проволоки 0.1 мм, которую можно добыть, расплетая тросик. Проволочку следует отжечь на зажигалке, тщательно протереть мелкой шкуркой, облудить концы и кусочек длиной около 3 см припаять в отверстия на плате. Далее в процессе настройки надо, измеряя ток через диоды, двигать проволочку, одновременно разогревая паяльником место ее припаивания к плате.

Таким образом, получается нечто вроде реостата. Добившись тока в 20 мА, паяльник убирают, а ненужный кусок проволочки обрезают. У автора вышла длина примерно 1 см.

Фонарик на источнике тока


Рис. 3. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, так что светодиоды могут быть c любым разбросом параметров (светодиод VD2 задает ток, который повторяют транзисторы VT2, VT3, таким образом, токи в ветвях будут одинаковыми)
Транзисторы конечно тоже должны быть одинаковыми, но разброс их параметров не так критичен, поэтому можно взять либо дискретные транзисторы, либо если сможете найти, три интегральных транзистора в одном корпусе, у них параметры максимально одинаковые. Проиграйтесь с размещением светодиодов, нужно подобрать пару светодиод-транзистор так что бы выходное напряжение было минимально, это повысит КПД.
Введение транзисторов выровняло яркость, однако они имеют сопротивление и на них падает напряжение, что вынуждает преобразователь повышать уровень выходного до 4В, для снижения падения напряжения на транзисторах можно предложить схему на рис.4, это модифицированное токовое зеркало, вместо опорного напряжения Uбэ=0.7В в схеме на рис.3 можно воспользоваться встроенным в преобразователем источником 0.22В, и поддерживать его в коллекторе VT1 при помощи операционика, также встроенным в преобразователь.


Рис. 4. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, и с улучшенным КПД

Т. к. выход операционника имеет тип «открытый коллектор» его необходимо «подтянуть» к питанию, что делает резистор R2. Сопротивления R3, R4 выполняют функции делителя напряжения в точке V2 на 2, таким образом операционник поддержит в точке V2 напряжение 0.22*2 = 0.44В, что меньше чем в предыдущем случаи на 0.3В. Брать делитель еще меньше, чтобы понизить напряжение в точке V2, нельзя т. к. биполярный транзистор имеет сопротивление Rкэ и при работе на нем будет падать напряжение Uкэ, чтобы транзистор правильно работал V2-V1 должно быть больше Uкэ, для нашего случая 0.22В вполне достаточно. Однако биполярные транзисторы можно заменить полевыми, в которых сопротивление сток исток гораздо меньше, это даст возможность уменьшить делитель, так чтобы, сделать разность V2-V1 совсем незначительной.

Дроссель. Дроссель нужно брать с минимальным сопротивлением, особое внимание следует уделить максимальному допустимому току он должен быть порядка мА.
Номинал не играет такой роли как максимальный ток, поэтому Analog Devices рекомендует, что-то между 33 и 180мкГн. В данном случаи, теоретически, если не обращать внимание на габариты, то чем больше индуктивность, тем лучше по всем показателем. Однако на практике это не совсем так, т. к. мы имеем не идеальную катушку, она имеет активное сопротивление и не линейна, кроме того, ключевой транзистор при низких напряжениях уже не выдаст 1.5А. Поэтому лучше попробовать несколько катушек разного типа, конструкции и разного номинала, что бы выбрать катушку, при которой самый высокий КПД, и самое маленькое минимальное входное напряжение, т. е. катушку, с которой фонарик будет светиться максимально долго.

Конденсаторы.
C1 может быть любым. С2 лучше взять танталовым т. к. у него маленькое сопротивление это повышает КПД.

Диод Шотки.
Любой на ток до 1А, желательно с минимальным сопротивлением и минимальным падением напряжения.

Транзисторы.
Любые с током коллектора до 30 мА, коэф. усиления тока порядка 80 с частотой до 100Мгц, КТ318 подойдет.

Светодиоды.
Можно белые NSPW500BS со свечением в 8000мКд от Power Light Systems .

Преобразователь напряжения
ADP1110, или его замену ADP1073, для его использования схему на рис.3 нужно будет изменить, взять дроссель 760мкГ, а R1 = 0.212/60мА = 3.5Ом.

Фонарь на ADP3000-ADJ

Параметры:
Питание В, КПД ок. 75%, два режима яркости - полный и половина.
Ток через диоды 27 мА, в режиме половинной яркости - 13 мА.
В схеме для получения высокого КПД желательно использовать чип-компоненты.
Правильно собранная схема в настройке не нуждается.
Недостатком схемы является высокое (1,25V) напряжение на входе FB (вывод 8).
В настоящее время выпускаются DC/DC конвертеры с напряжением FB около 0,3V, в частности, фирмы Maxim, на которых реально достичь КПД выше 85%.

Схема фонаря на Кр1446ПН1.

Резисторы R1 и R2 - датчик тока. Операционный усилитель U2B - усиливает напряжение, снимаемое с датчика тока. Коэффициент усиления = R4 / R3 + 1 и составляет примерно 19. Требуется такой коэффициент усиления, чтобы при токе через резисторы R1 и R2 60 мА напряжение на выходе открыло транзистор Q1. Изменяя эти резисторы, можно устанавливать другие значения тока стабилизации.
В принципе операционный усилитель можно и не ставить. Просто вместо R1 и R2 ставится один резистор 10 Ом, с него сигнал через резистор 1кОм подаётся на базу транзистора и всё. Но. Это приведёт к уменьшению КПД. На резисторе 10 Ом при токе 60 мА напрасно рассеивается 0.6 Вольта - 36 мВт. В случае применения операционного усилителя потери составят:
на резисторе 0.5 Ома при токе 60 мА = 1.8 мВт + потребление самого ОУ 0.02 мА пусть при 4-х Вольтах = 0.08 мВт
= 1.88 мВт - существенно меньше, чем 36 мВт.

О компонентах.

На месте КР1446УД2 может работать любой малопотребляющий ОУ с низким минимальным значением напряжения питания, лучше подошёл бы OP193FS, но он достаточно дорогой. Транзистор в корпусе SOT23. Полярный конденсатор поменьше - типа SS на 10 Вольт. Индуктивность CW68 100мкГн на ток 710 мА. Хотя ток отсечки у преобразователя 1 А, она работает нормально. С ней получился наилучший КПД. Светодиоды я подбирал по наиболее одинаковому падению напряжения при токе 20 мА. Собран фонарик в корпусе для двух батарей AA. Место под батареи я укоротил под размер батарей AAA, а в освободившемся пространстве навесным монтажом собрал эту схему. Хорошо подойдёт корпус для трёх батарей AA. Ставить нужно будет только две, а на месте третьей разместить схему.

КПД получившегося устройства.
Входные U I P Выходные U I P КПД
Вольт мА мВт Вольт мА мВт %
3.03 90 273 3.53 62 219 80
1.78 180 320 3.53 62 219 68
1.28 290 371 3.53 62 219 59

Замена лампочки фонарика “Жучёк” на модуль фирмы Luxeon Lumiled LXHL- NW98.
Получаем ослепительно яркий фонарик, с очень легким жимом (по сравнению с лампочкой).
https://pandia.ru/text/78/440/images/image083_0.jpg" width="161" height="205">


Питание: 1 или 2 батарейки 1,5в работоспособность сохраняется до Uвход.=0,9в
Потребление:
*при разомкнутом переключателе S1 = 300mA
*при замкнутом переключателе S1 = 110mA

Светодиодный электронный фонарь
С питанием всего от одной пальчи­ковой батареи типоразмера АА или AAA на микросхеме (КР1446ПН1), которая является полным аналогом микросхемы МАХ756 (МАХ731) и имеет практиче­ски идентичные характеристики.


За основу взят фо­нарь, в котором в качестве источника питания используются две паль­чиковые батарейки (аккумуляторы) типоразмера АА.
Плата преобразователя помещается в фонарь вместо второго эле­мента питания. С одного торца платы припаян контакт из луженой же­сти для питания схемы, а с другого - светодиод. На выводы светодиода надет кружок из той же жести. Диаметр кружка должен быть чуть боль­ше диаметра цоколя отражателя (на 0,2-0,5 мм), в который вставля­ется патрон. Один из выводов диода (минусовой) припаян к кружку, второй (плюсовой) проходит насквозь и изолирован кусочком трубоч­ки из ПВХ или фторопласта. Назначение кружка - двойное. Он обе­спечивает конструкции необходимую жесткость и одновременно слу­жит для замыкания минусового контакта схемы. Из фонаря заранее удаляют лампу с патроном и помещают вместо нее схему со светодиодом. Выводы светодиода перед установкой на плату укорачивают та­ким образом, чтобы обеспечивалась плотная, без люфта, посадка «по месту». Обычно длина выводов (без учета пайки на плату) равна длине выступающей части полностью вкрученного цоколя лампы.
Схема соединения платы и аккумулятора приведена на рис. 9.2.
Далее фонарь собирают и проверяют его работоспособность. Если схема собрана правильно, то никаких настроек не требуется.

В конструкции применены, стандарт­ные установочные элементы: конденсаторы типа К50-35, дроссели ЕС-24 индуктивностью 18-22 мкГн, светодиоды яркостью 5-10 кд диаметром 5 или 10 мм. Разумеется, возможно, применение и других светодиодов с напряжением питания 2,4-5 В. Схема имеет достаточный запас по мощности и позволяет пи­тать даже светодиоды с яркостью до 25 кд!

О некоторых результатах испытаний данной конструкции.
Доработанный таким образом фонарь проработал со «свежей» ба­тарейкой без перерыва, во включенном состоянии, более 20 часов! Для сравнения - тот же фонарь в «стандартной» комплектации (то есть с лампой и двумя «свежими» батарейками из той же партии) рабо­тал всего 4 часа.
И еще один важный момент. Если применять в данной конструкции перезаряжаемые аккумуляторы, то легко следить за состоянием уров­ня их разрядки. Дело в том, что преобразователь на микросхеме КР1446ПН1 стабильно запускается при входном напряжении 0,8-0,9 В. И свечение светодиодов стабильно яркое, пока напряжение на аккуму­ляторе не достигло этого критического порога. Лампа гореть при таком напряжении, конечно, еще будет, но вряд ли можно говорить о ней как о реальном .

Рис. 9.2 Рис 9.3


Печатная плата устройства приведена на рис. 9.3, а расположение элементов - на рис. 9.4.

Включение и выключение фонаря одной кнопкой


Схема собрана на микросхеме D-триггера CD4013 и полевом транзисторе IRF630 в режиме "выкл." ток потребления схемы - практически 0. Для стабильной работы D-триггера на входе микросхемы подключен фильтр резистор и конденсатор их функция - устранение контактного дребезга. Не используемые выводы микросхемы лучше никуда не подключать. Микросхема работает от 2 до 12 вольт, в качестве силового ключа можно использовать любой мощный полевой транзистор, т. к. сопротивление сток-исток у полевого транзистора ничтожно мало и не нагружает выход микросхемы.

CD4013A в корпусе SO-14, аналог К561ТМ2, 564ТМ2

Простые схемы генератора.
Позволяют питать светодиод с напряжением загорания 2-3V от 1-1,5V. Короткие импульсы повышенного потенциала отпирают p-n переход. КПД конечно понижается, но это устройство позволяет "выжать" из автономного источника питания почти весь его ресурс.
Проволока 0,1 мм - 100-300 витков с отводом от середины, намотанные на тороидальное колечко.

Светодиодный фонарь с регулируемой яркостью и режимом "Маяк"

Питание микросхемы - генератора с регулируемой скважностью (К561ЛЕ5 или 564ЛЕ5) которая управляет электронным ключом, в предлагаемом устройстве осуществляется от повышающего преобразователя напряжения, что позволяет питать фонарь от одного гальванического элемента 1,5.
Преобразователь выполнен на транзисторах VT1, VT2 по схеме трансформаторного автогенератора с положительной обратной связью по току.
Схема генератора с регулируемой скважностью на упомянутой выше микросхеме К561ЛЕ5 немного изменена с целью улучшения линейности регулирования тока.
Минимальный потребляемый ток фонаря с шестью параллельно включенными суперяркими светодиодами L-53MWC фирмы Kingbnght белого свечения равен 2.3 мА Зависимость потребляемого тока от числа светодиодов - прямо пропорциональная.
Режим "Маяк", когда светодиоды с невысокой частотой ярко вспыхивают и затем гаснут, реализуется при установке регулятора яркости на максимум и повторном включении фонаря. Желаемую частоту световых вспышек регулируют подбором конденсатора СЗ.
Работоспособность фонаря сохраняется при понижении напряжения до 1.1v хотя при этом значительно уменьшается яркость
В качестве электронного ключа применен полевой транзистор с изолированным затвором КП501А (КР1014КТ1В). По цепи управления он хорошо согласуется с микросхемой К561ЛЕ5. Транзистор КП501А имеет следующие предельные параметры, напряжение сток-исток - 240 В; напряжение затвор-исток - 20 В. ток стока - 0.18 А; мощность - 0.5 Вт
Допустимо параллельное включение транзисторов желательно из одной партии. Возможная замена - КП504 с любым буквенным индексом. Для полевых транзисторов IRF540 напряжение питания микросхемы DD1. вырабатываемое преобразователем, должно быть повышено до 10 В
В фонаре с шестью параллельно включенными светодиодами L-53MWC потребляемый ток примерно равен 120 мА при подключении параллельно VT3 второго транзистора - 140 мА
Трансформатор Т1 намотан на ферритовом кольце 2000НМ К10- 6"4.5. Обмотки намотаны в два провода, причем конец первой обмотки соединяют с началом второй обмотки. Первичная обмотка содержит 2-10 витков, вторичная - 2*20 витков Диаметр провода - 0.37 мм. марка - ПЭВ-2. Дроссель намотан на таком же магнитопроводе без зазора тем же проводом в один слой, число витков - 38. Индуктивность дросселя 860 мкГн


Схема преобразователя для светодиода от 0,4 до 3V - работающая от одной батарейки AAA. Этот фонарь повышает входное напряжение до нужного простым конвертером DC-DC.




Выходное напряжение составляет приблизительно 7 вт (зависит от напряжения установленного диода LEDs).

Building the LED Head Lamp

https://pandia.ru/text/78/440/images/image107_0.jpg" alt="Transformer" width="370" height="182">
Что касается трансформатора в конвертере DC-DC. Вы должны его сделать самостоятельно. Изображение показывает, как собрать трансформатор.

Ещё вариант преобразователей для светодиодов _http://belza. cz/ledlight/ledm. htm



Зарядные устройства" href="/text/category/zaryadnie_ustrojstva/" rel="bookmark">зарядным устройством .

Свинцово кислотные герметичные аккумуляторные батареи самые дешевые в настоящее время. Электролит в них находится в виде геля, поэтому аккумуляторы допускают работу в любом пространственном положении и не производят никаких вредных испарений. Им свойственна большая долговечность, если не допускать глубокого разряда. Теоретически они не боятся перезаряда, однако злоупотреблять этим не следует. Подзарядку аккумуляторных батарей можно производить в любое время, не дожидаясь их полной разрядки.
Свинцово-кислотные герметичные аккумуляторные батареи подходят для применения в переносных фонарях, используемых в домашнем хозяйстве, на дачных участках, на производстве.


Рис.1. Схема электрического фонаря

Электрическая принципиальная схема фонаря с зарядным устройством для 6-вольтового аккумулятора, позволяющая простым способом не допустить глубокий разряд аккумулятора и, таким образом, увеличить его срок службы, показана на рисунке. Он содержит заводской или самодельный трансформаторный блок питания и зарядно-коммутационное устройство, смонтированное в корпусе фонаря.
В авторском варианте в качестве трансформаторного блока применен стандартный блок, предназначенный для питания модемов. Выходное переменное напряжение блока 12 или 15 В, ток нагрузки – 1 А. Встречаются такие блоки и с встроенными выпрямителями. Они также подходят для этой цели.
Переменное напряжение с трансформаторного блока поступает на зарядно-коммутационное устройство, содержащее вилку для подключения зарядного устройства X2, диодный мостик VD1, стабилизатор тока (DA1, R1, HL1), аккумулятор GB, тумблер S1, кнопку экстренного включения S2, лампу накаливания HL2. Каждый раз при включении тумблера S1 напряжение аккумулятора поступает на реле К1, его контакты К1.1 замыкаются, подавая ток в базу транзистора VТ1. Транзистор включается, пропуская ток через лампу HL2. Выключают фонарь переключением тумблера S1 в первоначальное положение, в котором аккумулятор отключен от обмотки реле К1.
Допустимое напряжение разряда аккумулятора выбрано на уровне 4,5 В. Оно определяется напряжением включения реле К1. Изменять допустимое значение напряжения разряда можно с помощью резистора R2. С увеличением номинала резистора допустимое напряжение разряда увеличивается, и наоборот. Если напряжение аккумулятора ниже 4,5 В, то реле не включится, следовательно, не будет подано напряжение на базу транзистора VТ1, включающего лампу HL2. Это значит, что аккумулятор нуждается в зарядке. При напряжении 4,5 В освещенность, создаваемая фонарем, неплохая. В случае экстренной необходимости можно включить фонарь при пониженном напряжении кнопкой S2, при условии предварительного включения тумблера S1.
На вход зарядно-коммутационного устройства можно подавать и постоянное напряжение, не обращая внимание на полярность стыкуемых устройств.
Для перевода фонаря в режим заряда необходимо состыковать розетку Х1 трансформаторного блока с вилкой Х2, расположенной на корпусе фонаря, а затем включить вилку (на рисунке не показана) трансформаторного блока в сеть 220 В.
В приведенном варианте применен аккумулятор емкостью 4,2 Ач. Следовательно, его можно заряжать током 0,42 А. Заряд аккумулятора производится постоянным током. Стабилизатор тока содержит всего три детали: интегральный стабилизатор напряжения DA1 типа КР142ЕН5А либо импортный 7805, светодиод HL1 и резистор R1. Светодиод, кроме работы в стабилизаторе тока, выполняет также функцию индикатора режима заряда аккумулятора.
Настройка электрической схемы фонаря сводится к регулировке тока заряда аккумулятора. Зарядный ток (в амперах) обычно выбирают в десять раз меньше численного значения емкости аккумулятора (в ампер-часах).
Для настройки лучше всего собрать схему стабилизатора тока отдельно. Вместо аккумуляторной нагрузки к точке соединения катода светодиода и резистора R1 подключить амперметр на ток 2…5 А. Подбором резистора R1 установить по амперметру вычисленный ток заряда.
Реле К1 – герконовое РЭС64, паспорт РС4.569.724. Лампа HL2 потребляет ток примерно 1А.
Транзистор КТ829 можно применить с любым буквенным индексом. Эти транзисторы являются составными и имеют высокий коэффициент усиления по току – 750. Это следует учитывать в случае замены.
В авторском варианте микросхема DA1 установлена на стандартном ребристом радиаторе размерами 40х50х30 мм. Резистор R1 состоит из двух последовательно соединенных проволочных резисторов мощностью 12 Вт.

Лирическое вступление

В данной статье будет рассмотрена модернизация карманного фонаря на примере устройства небезызвестной фирмы Philips. Итак, какие же у него могут быть недостатки? Как и у всех карманных фонарей, у этого прибора было замечено значительное уменьшение яркости свечения лампы накаливания при "подсаживании" батарей. И естественно, низкий КПД и срок службы. А, тем не менее, решение этих извечных проблем существует.

Светодиоды! Но достаточно ли будет заменить только источник света? Нет. В большинстве фонарей используется уже ставшая классической схема, в которой две батарейки на 1,5 вольта включены последовательно. Но напряжения в 3 вольта недостаточно для яркого свечения светодиода, поэтому, стоит включить в схему преобразователь. Преобразователь имеет более стабильный ток на выходе, когда на входе может быть и 0,5 В и меньше. Что происходит с ламповым фонарем, если его батареи разрядились до такого предела? Правильно, он не работает. Поэтому преобразователь является наиболее удачным ходом в решении этой проблемы.

Встает новая проблема: где его разместить? Ведь в корпусе фонаря зачастую нет места. Если у вас есть бескорпусные компоненты можно разметить прямо в цоколе лампы, а если нет? В этом поможет разобраться моя статья.

Схемотехника

Как я уже сказал, решение существует. Вполне оригинальное решение, я считаю.

Рассмотрим схему преобразователя:

На схеме изображен блокинг-генератор. Возбуждение достигается трансформаторной связью на трансформаторе Т1. Импульсы напряжения, возникающие в правой (по схеме) обмотке складываются с напряжением источника питания и поступают на светодиод VD1. Конечно, можно было бы исключить конденсатор и резистор в цепи базы транзистора, но тогда возможен выход из строя VT1 и VD1 при использовании фирменных батарей с низким внутренним сопротивлением. Резистор задает режим работы транзистора, а конденсатор пропускает ВЧ составляющую.

В схеме использовался транзистор КТ315 (как самый дешевый), сверхяркий светодиод (как самый яркий). О трансформаторе поговорим отдельно. Для его изготовления потребуется кольцо из феррита (ориентировочный размер 10х6х3 и проницаемостью около 1000 HH). Диаметр проволоки около 0,2 мм. На кольцо наматываются две катушки по 20 витков в каждой. Если у вас нет кольца, то можно использовать аналогичный по объему и материалу цилиндр. Только придется мотать уже 60-100 витков для каждой из катушек. Важный момент: мотать катушки нужно в разные стороны. На худой конец можно использовать гвоздь, но большой гвоздь, да и витков для одной катушки требуется уже порядка 150. Кроме того КПД гвоздя значительно ниже, чем у феррита.

Пожалуй, перейдем теперь к практике.

Практика

Рассмотрим фотографию фонарика. Это нужно чтобы понять смысл моих изысканий. Ничего футуристичного здесь нет, замечу только, что выключатель находится в кнопке «авторучки», а серый цилиндр металлический и проводит ток.

Итак, шаг первый. Создаем «корпус» устройства.

По типоразмеру батарейки делаем цилиндр. Например, типоразмер батареек в моем фонарике AAA. Его можно изготовить из бумаги (как я), или использовать отрезок любой жесткой трубки. Для проклейки используем «резиновый» клей, так как он хороший диэлектрик.

Проделываем отверстия по краям цилиндра, обматываем его залуженным проводником, пропускаем в отверстия концы проволоки. Фиксируем оба конца, но оставляем с одного из концов кусок проводника: чтобы можно было подсоединить преобразователь к спирали. (Гайка показанная на рисунке пока не нужна)

Теперь займемся сборкой самого преобразователя. У меня не было кольца из феррита (да оно и не влезло бы в фонарь), поэтому использовался цилиндр из аналогичного материала.

Цилиндр был изъят из катушки индуктивности от старого телевизора. На него аккуратно наматывается первая катушка. Витки скрепляются клеем. У меня залезло около 60 витков. Потом вторая, мотается в обратную сторону. У меня получилось опять 60 или около того; точно не считал – не получилось намотать аккуратно. Закрепляем клеем края. Сушим. В процессе сушки катушку можно слегка подогреть. Я положил ее на листке бумаги на плафон настольной лампы. Пусть сохнет. А мы идем дальше.

Собираем по схеме преобразователь:

Все располагается как на рисунке: транзистор, конденсатор резистор и т. д. Пассивные и активные элементы собрали, подпаиваем спираль на цилиндре, катушку. Ток в обмотках катушки должен идти в разные стороны! То есть если вы мотали все обмотки в одну сторону, то поменяйте местами выводы одной из них, иначе генерация не возникнет.

Радуемся, так как у нас получилось нижеследующее:

Все вставляем вовнутрь, а в качестве боковых заглушек и контактов используем гайки.

К одной из гаек подпаиваем выводы катушки, а к другой эмиттер VT1. Приклеиваем. маркируем выводы: там, где у нас будет вывод от катушек ставим « - », где вывод от транзистора с катушкой ставим «+» (чтобы было все как в батарейке).

Все. У вас получилось нечто похожее на то, что изображено на предыдущем рисунке.

Теперь следует изготовить «ламподиод». Берем обычный цоколь от отслужившей свое лампочки, и…

Один момент: на цоколе должен быть минус светодиода. Иначе ничего не заработает.

Существовал и другой вариант решения проблемы. Конечно, можно создать непосредственно модуль преобразователя со светодиодом в одном корпусе. В этом случае как вы уже вероятно заметили, нужно всего два контакта. Можно сделать и так. Зато в этом варианте решения нельзя легко менять светодиоды. Зачем менять? Очень просто, ведь можно использовать ультрафиолетовый светодиод, и проверять на подлинность денежные банкноты и много чего еще. Кроме того, я считаю, что мой способ решения проблемы более эргономичен и интересен.

Техника сборки

Как понятно из рисунка, преобразователь представляет собой «заменитель» второй батарейки. Но в отличие от нее, он имеет три точки контакта: с плюсом батарейки, с плюсом светодиода, и общим корпусом (через спираль). Однако, его местоположение в батарейном отсеке является определенным: он должен контактировать с плюсом светодиода. Говоря проще, последовательность сборки на картинке менять нельзя. Иначе, как вы уже догадались, устройство не будет работать.

Модернизированный фонарь в работе:

Такой фонарь более экономичен, эргономичен и, вследствие отсутствия второй батарейки легок. И главное достоинство! Все детали можно найти на помойке!

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ315А

1 С любым буквенным индексом В блокнот
C1 Конденсатор 2700 пФ 1 В блокнот
R1 Резистор

1 кОм

1

Для тех из вас, кто не знает, о чем идёт речь, блокинг генератор — это крошечная схема с самозапиткой, которая позволит вам зажигать светодиоды от старых батареек, напряжение которых упало вплоть до 0.5 Вольт.

Вы думаете, что батарейка уже отжила свое? Подключите её к блокинг генератору и выжмите из неё всё до последней капли энергии своими руками!

Шаг 1: Компоненты и инструмент

Для проекта понадобится всего несколько вещей, которые видны на фотографии, но для тех из вас, кто любит читать, я приложу вариант списка в текстовом виде:

  • Паяльник
  • Припой
  • Светодиод
  • Транзистор 2N3904 или его эквивалент
  • Резистор 1К
  • Тороидная бусина
  • Тонкий провод, двух цветов

Если вы найдёте транзистор 2N4401 или BC337, то светодиод будет гореть ярче, так как они рассчитаны под большую силу тока.

Шаг 2: Обмотайте тороид проводом




Сначала нужно обмотать проводом тороид. Свой я нашел в старом блоке питания. Тороиды похожи по форме на пончик и притягиваются магнитом.

Возьмите два провода, скрутите вместе их концы (вам необязательно делать так, но это немного упростит обмотку тороида).

Пропустите скрученные концы через тороид, затем возьмите два других (нескрученных конца) и обмотайте вокруг тороида. Не перекручивайте провода, убедитесь, что по всей обмотке нет места, где два повода с одинаковым цветом находятся рядом. В идеале нужно сделать 8-11 витков, находящихся на одинаковом расстоянии друг от друга и плотно прилегающих к тороиду. Как только вы завершите обмотку, отрежьте излишнюю длину провода, оставив около 5 см для соединения с другими компонентами схемы.

Снимите с концов проводов немного изоляции, затем возьмите по одному проводу с каждой стороны, убедившись что они разных цветов. Скрутите их и ваш тороид готов.

Шаг 3: Припаиваем компоненты







Пришло время спаять всё в одно устройство. Вы можете поместить всё на макетную плату, но в инструкции я решил собрать всё на коленке. Можете следовать текстовой инструкции или спаять всё по картинкам — там всё отлично отображено.

Сначала возьмите два внешних контакта транзистора и слегка отогните их наружу, а средний загните внутрь. Контакты светодиода также согните наружу. Это необязательный шаг, но он поможет проще спаять компоненты.

Возьмите один из проводов тороида, которые остались несоединёнными (всё правильно, один из нескрученных вместе проводов). Припаяйте его к одной из сторон резистора. Припаяйте другой конец резистора к среднему контакту транзистора.

Возьмите второй одиночный провод тороида и припаяйте его к коллектору транзистора. Припаяйте положительный контакт светодиода также к коллектору, а отрицательный контакт к эмиттеру.

Всё, что осталось сделать — это припаять удлинительный провод к отрицательному контакту светодиода. Возьмите кусок провода, который у вас был до этого, и припаяйте его к эмиттеру транзистора.

Шаг 4: Пробуем девайс в действии


Всё готово! Вы завершили ваш блокинг генератор на одном транзисторе. Приложите скрученные провода тороида к положительному контакту батарейки, а удлинительный провод к отрицательному контакту. Если всё собрано правильно, то светодиод загорится. Если светодиод не загорится, то попробуйте обмотать тороид более тонким проводом.

Похожие публикации