Опоры валов и валов. Опоры валов и осей – подшипники Достоинства подшипников скольжения

Валы, оси и их опоры


К атегория:

Утстройство кранов на железнодорожном ходу



Валы, оси и их опоры

Каждая машина состоит из узлов, собранных из отдельных механизмов и деталей. Деталью принято называть неделимую часть машины, состоящую из монолитного куска материала или из нескольких кусков, соединенных между собой неподвижно при помощи сварки или иного неразъемного соединения.
Под механизмами условно будем понимать сочетание двух или нескольких деталей, связанных между собой и обусловливающих вполне определенное движение одной детали относительно другой.

Назначение механизмов состоит в передаче движения или усилия с вполне определенной целью. Любой механизм, какой бы сложности он ни был, состоит из отдельных узлов и деталей.

При рассмотрении механизма можно различить однотипные, однородные по своему назначению детали и соединения. Так, например во многих механизмах, имеющих различное назначение, можно встретить оси, валы, зубчатые передачи, поэтому целесообразно вначале познакомиться с этими наиболее характерными деталями и их соединениями.



Валом называют цилиндрическую деталь (длина которой значительно превосходит диаметр), предназначенную для передачи вращательного движения и крутящего момента.

Если вал по всей своей длине имеет один диаметр, то он называется гладким; если же диаметр по длине вала различен, то такой вал называют ступенчатым.
Кроме гладких и ступенчатых, валы могут быть специальными, например коленчатые валы, и их необходимо рассматривать отдельно.

Осью называют также цилиндрическую деталь, однако в отличие от вала ось не предназначена для передачи движений и усилий вращения, а служит в основном для фиксации вращающейся детали. Если вал, как правило, вращается, то ось в большинстве своем неподвижна, а вращаются детали, посаженные на эту ось. Исключение из этого общего правила составляет ось колесной пары вагона или локомотива, которая во время работы вращается.

Материалом для изготовления валов и осей служат обыкновенные углеродистые стали преимущественно марок 40 и 45 ГОСТ 1050-60 или Ст. 4 и Ст. 5 ГОСТ 380-60, а также некоторые легированные стали.

Поверхности валов и осей, работающие на трение, рекомендуется до шлифовки термически обрабатывать; в этом случае резко снижается износ и повреждение рабочих поверхностей.

В качестве опор для валов служат различного рода подшипники, которые разделяются на две основные группы: прдшипники скольжения и подшипники качения.

Подшипники скольжения предназначены для воспринятая радиальных усилий, направленных перпендикулярно осевой линии вала.

Воспринятие усилий, направленных вдоль вала, во многих случаях возможно при помощи создания рабочей поверхности не только по внутренней полости, но и на боковой стороне подшипника или при помощи постановки нового упора - так называемого подпятника.

Рис. 89. Подшипники скольжения:
а -разъемный подшипник; б-неразъемный (розеточный) подшипник; 1- корпус; 2-крышка; 3 - вкладыш (рис. а), втулка (рис. б); 4 - штифт; 5 -масленка; б -болт; 7 -гайки; 8 - фундаментный болт; 9 - гайка; 10 - шайба

Форма опорной трущейся поверхности подшипника зависит от формы шейки вала, которая чаще всего бывает цилиндрической, но может быть конической или шаровой.

Основными элементами подшипника скольжения (рис. 89) являются: корпус, прикрепляемый к машине или составляющий одно целое с ее станиной, и вкладыши - детали, закладываемые в корпус подшипника и непосредственно соприкасающиеся с рабочей поверхностью вала. Корпус подшипника может иметь различную форму и выполняется цельным или разъемным.

У подшипников с разъемным корпусом крышки с корпусом соединены болтами или шпильками. Для разгрузки болтов от поперечных усилий крышки к корпусу подшипника припасовывают не по ровной плоскости, а с уступом - с так называемым «замком». Материалом для корпуса подшипника служит чугун или сталь.

Для образования антифрикционных поверхностей подшипника, т. е. поверхностей, которые при работе не повреждали бы шеек вала и в то же время были бы сами достаточно стоики к износу, в подшипник вставляют вкладыши. В неразъемные подшипники обычно запрессовывают вкладыш в виде втулки и закрепляют его стопорным винтом. В разъемные подшипники вставляют вкладыши, состоящие в большинстве своем из двух половинок. Материалом для вкладышей служат антифрикционные сплавы - бронза и специальные чугуны или пластмасса типа «стирокрил».

Иногда взамен вкладышей внутреннюю поверхность подшипника заливают специальным антифрикционным сплавом.

Чтобы предохранить вкладыши от продольного смещения, их делают с буртиками, а для предохранения от проворачивания фиксируют штифтами.

Форма и размеры вкладышей имеют большое значение для работы подшипника. Вкладыши должны быть достаточно прочными и возможно большей поверхностью соприкасаться с корпусом подшипника, благодаря чему улучшаются условия отвода тепла. Чрезмерно слабый вкладыш или малая опорная поверхность его в корпусе может вызывать прогиб вкладыша и защемление вала. Большое значение для нормальной работы подшипника имеет смазка, для чего на валу или на вкладышах выполняют смазочные канавки, обеспечивающие смазывание всей рабочей поверхности вкладыша.

Подшипники качения представляют собой наиболее совершенный вид опор и в современном машиностроении находят все более широкое применение. Подшипники качения разделяются на две основные группы по форме элементов качения: шариковые подшипники и подшипники роликовые, которые в свою очередь могут быть с цилиндрическими роликами, с коническими, витыми, бочкообразными и игольчатыми.

По способу воспринятия нагрузки подшипники качения различаются: на подшипники радиальные, воспринимающие усилия, направленные лишь перпендикулярно оси вала; упорные, воспринимающие усилия, направленные вдоль оси вала, и радиально-упорные, воспринимающие как перпендикулярные, так и продольные усилия.

По способности самоустанавливаться при перекосе вала или корпуса подшипники разделяют на самоустанавливающиеся и несамо-устанавливающиеся. В самоустанавливающихся подшипниках внутренняя обойма имеет возможность смещаться, изменять наклон по отношению к наружной обойме подшипника и тем самым выравнивать перекос, допущенный при монтаже оси или вала.

Преимущество подшипников качения перед подшипниками скольжения заключается в том, что в них трение скольжения заменено трением качения, имеющим меньший коэффициент трения. Следовательно, при подшипниках качения меньшая часть энергии затрачивается на преодоление сил трения и в конечном счете на нагрев подшипника.

Хорошо подобранный и правильно установленный подшипник качения способен работать дольше. Он надежнее подшипника скольжения и не требует частой проверки наличия смазки.

Вместе с тем следует отметить, что попадание в подшипник грязи или песка быстро выводит его из строя. Поэтому при установке подшипников особенно важно принять меры против их загрязнения; подшипник должен быть установлен в хорошо закрытом корпусе.

Посадка подшипника в корпус и насадка на валы могут быть выполнены различно в зависимости от характера и назначения механизма. Однако можно придерживаться одного правила: соединение подшипника с вращающимся элементом должно быть неподвижным, напряженным, а в соединении с неподвижным элементом посадка подшипника должна быть более легкой. Если, например, вал вращается, а корпус неподвижен, то подшипник на вал садится неподвижной посадкой, а в корпус входит более свободно.

Места под посадку подшипников должны протачиваться по выбранным в соответствующих таблицах допускам. При установке подшипников с неподвижной посадкой не рекомендуется напрессовывать их ударами. Для облегчения рекомендуется производить посадку подшипника с предварительным нагревом его в горячем масле. В этом случае за счет расширения металла увеличивается внутренний диаметр подшипника и последний легко может быть надет на вал. Точно так же допустима посадка подшипника в предварительно нагретый до температуры 80-90 °С корпус.

К атегория: - Утстройство кранов на железнодорожном ходу

4.1. Валы и оси. Назначение, типы валов и осей и их формы поперченных сечений.

Оси и валы

В современных машинах наиболее часто используют вращательное движение. Вращающиеся детали, такие, как зубчатые колеса, шкивы, звездочки, блоки, муфты и др., направляются и поддерживаются в пространстве при помощи валов и осей. Валы и оси в большинстве случаев имеют форму тел вращения.

Вращающиеся детали и поддерживающие их валы обычно жестко соединены посадками с натягом, шпонками, шлицами и т. п., поэтому валы могут быть только вращающимися, при этом они всегда передают вращающий момент и подвержены кручению.

На осях вращающиеся детали могут быть либо закреплены неподвижно, например, с помощью посадок с натягом, и тогда оси должны вращаться, либо установлены свободно, например, по посадке с зазором, на подшипниках качения и т. п., и тогда оси могут быть неподвижными; в любом случае оси не передают вращающий момент и их можно рассматривать как частную разновидность валов, не подверженных кручению.

Ось - это брус круглого или фасонного сечения, используемый для поддержания закрепленных на нем вращающихся деталей . При этом сама ось может быть как неподвижной, так и вращающейся. На ось действуют только изгибающие нагрузки.

Вал - это ось, предназначенная не только для поддержания деталей, но и для передачи крутящего момента .

По назначению валы можно разделить на коренные, т. е. валы несущие основные рабочие органы машин (ротор турбины, коленчатый вал двигателя внутреннего сгорания, шпиндель станка), и передаточные (валы передач), используемые для передачи и распределения движения и несущие на себе детали передач: зубчатые колеса, шкивы, звездочки и т. д. В ряде машин (сельскохозяйственных, дорожных) применяют валы для передачи вращающего момента к исполнительным органам; их называют трансмиссионными.

Иногда используют торсионные валы (торсионы), т. е. валы обычно малых диаметров и передающих только вращающие моменты.

Валы по форме геометрической оси разделяют на прямые (рис. 83, а, б, в, г, д, е) и коленчатые (рис. 83, ж). Последние применяют для преобразования возвратно-поступательного движения (поршней) во вращательное (коленчатого вала) или наоборот. Особую группу представляют гибкие валы с изменяемой формой геометрической оси, их применяют для привода механизированного инструмента, в зубоврачебных бормашинах и т. п.

Оси (детали) имеют прямую геометрическую ось. Коленчатые, гибкие, а также кулачковые валы относятся к специальным, и не рассмотрены в настоящем курсе.

Рис. 83. Основные типы валов и осей.

Наиболее распространены прямые валы и оси; они могут быть постоянного диаметра (рис. 83, а, б ) или ступенчатыми (рис. 83, в, г, д, е). Чаще всего валы и оси выполняют ступенчатыми, хотя валы и оси постоянного сечения более технологичны.

Форма валов и осей по длине определяется распределением действующих сил и моментов, технологией изготовления и условиями сборки. Эпюры изгибающих моментов и поперечных сил по длине валов и осей, как правило, не постоянны; вращающий момент передается обычно не по всей длине вала. Поэтому по условию равнопрочности целесообразно конструировать валы и оси ступенчатыми, близкими по форме к балкам равного сопротивления (форма балки равного сопротивления показана штриховой линией на рис. 83, в).

В поперечном сечений валы и оси могут быть сплошными (рис. 84, а ) или полыми (рис. 84, б), а по форме сечения - цилиндрическими (рис. 84, а, б), со шпоночными (рис. 84, в ) или шлицевыми (рис. 84, г )канавками, а также профильными (рис. 84, д ).

Применение полых валов и осей позволяет существенно снизить массу, например, при равной прочности сплошного и полого валов с отношением диаметра отверстия к наружному диаметру 0,75, масса полого вала будет меньше почти в 1,5 раза.

Рис. 84. Формы поперечных сечений валов и осей.

Концевые опорные участки валов и осей называют цапфами или шипами. Цапфы (шейки) валов и осей, когда в опорах установлены подшипники скольжения, выполняют: цилиндрическими (рис. 85, а, б )или коническими (рис. 85, в ). В большинстве случаев цапфы валов и осей для подшипников скольжения имеют цилиндрическую форму е закругленным переходом (галтелью) и с заплечиком (буртиком) для односторонней фиксации в осевом направлении (см. рис. 85, а ). В случае необходимости двусторонней осевой фиксации вала (оси) в одной опоре цапфа снабжается дополнительным буртиком (см. рис. 85, б ).

Цапфы валов и осей для подшипников качения выполняют цилиндрическими с заплечиком, служащим для односторонней фиксации в осевом направлении (рис. 86, а ). Для двусторонней фиксации внутреннего кольца подшипника на валу или оси дополнительно предусматривают гайки (рис. 86, б ), стопорные пружинные кольца, устанавливаемые в кольцевые канавки (рис. 86, в ), и др.

Рис. 85. Цапфы валов и осей под подшипники скольжения. Рис. 86. Цапфы валов и осей под подшипники качения.

Участки валов и осей под посадку ступиц деталей выполняют цилиндрическими или коническими. Чаще применяют цилиндрические посадочные поверхности как более технологичные. Конические посадочные поверхности, как правило, применяют для концевых участков валов.

Большое влияние на прочность, выносливость, надежность валов и осей оказывает форма переходных участков между соседними ступенями разных диаметров; Галтели должны иметь максимально возможные радиусы закруглений. Наиболее распространенная форма перехода - галтели постоянного радиуса (рис. 87, а ); желательно, чтобы радиус закругления R был больше 0,ld (d - диаметр вала). В особых случаях применяют галтели переменного радиуса кривизны ρ (рис. 87, в ).Правильным подбором кривизны галтели можно существенно снизить концентрацию напряжений и повысить несущую способность валов и осей. Снижению концентрации напряжений служит также применение разгрузочных выточек (рис. 87, а ).Канавку (рис. 87, г ) шириной 3-5 мм и глубиной 0,25-0,5 мм, удобную для выхода обрабатывающего инструмента, например шлифовального круга, используют в случае, когда определяющей является не усталостная прочность, а жесткость валов.

Рис. 87. Переходные участки валов и осей.

Наряду с концентрацией напряжений, вызванной геометрическими очертаниями деталей, на усталостную прочность влияет качество поверхностного слоя, т. е. микро-геометрия, как следствие механической обработки, и структурное состояние поверхностного слоя. Повышение усталостной прочности валов и осей достигается упрочнением материала посредством термической или химико-термической обработки, пластическим упрочнением (обкаткой роликами, обдувкой дробью), в результате которого в поверхностном слое образуются остаточные напряжения сжатия, а также шлифованием, полированием и, другими методами.

Осевые нагрузки на валы от насаженных на них, деталей передаются следующими способами:

значительные нагрузки - упором деталей в уступы (буртики, заплечики) на валу или, оси (рис, 88, а ) или посадкой деталей с соответствующим натягом (рис. 88, б );

средние нагрузки - гайками (см. рис. 88, б и88, в) или штифтами (рис. 88, г ), а также выше перечисленными способам;

легкие нагрузки -стопорными винтами (рис. 88, д )стопорными пружинными кольцами (рис. 86, в и 88, е ) и др.

Рис. 88. Средства восприятия осевых нагрузок и осевого крепления деталей на валах и осях.

Основными материалами, для валов и осей служат углеродистые и легированные стали. Для осей и валов, диаметры которых определяются, в основном, жесткостью, применяют углеродистые конструкционные стали Ст4, Ст5 без термообработки. В ответственных и тяжело нагруженных конструкциях (когда критерием является прочность) используют термически обрабатываемые среднеуглеродистые и легированные стали 40, 45, 40Х, 40ХН, 40ХН2МА, 30ХГГ, 30ХГСА и др. Валы из этих сталей в зависимости от решаемых задач подвергают улучшению (закалке с высоким отпуском) или поверхностной закалке (нагрев ТВЧ) с низким отпуском.

Быстроходные валы на опорах скольжения должны иметь весьма высокую твердость поверхности цапф; для этого их изготовляют из цементируемых сталей типа 20Х, 12ХН3А, 18ХГТ или из азотируемых сталей типа 38Х2МЮА.

Валы, работающие в коррозионной среде, изготовляют из нержавеющих сталей, титановых сплавов.

Для изготовления коленчатых валов и валов с большими фланцами наряду со сталью применяют высокопрочные (с шаровидным графитом) и модифицированные чугуны.

Прямые стальные валы и оси диаметром до 150 мм обычно изготовляют из проката; валы большего диаметра и сложной формы - из поковок. Полые валы целесообразно изготовлять из стальных труб стандартных размеров или из специально заказываемого недоката труб (с утолщенными стенками).

Валы и оси обычно подвергают токарной обработке в центрах и последующему шлифованию посадочных поверхностей (цапф, шеек, шипов) или шлифованию по всей поверхности (высоконапряженные валы).

В последнее время появилась конструкция полых валов из композитных материалов, получаемых намоткой.

Основными критериями работоспособности валов и осей являются прочность, жесткость и виброустойчивость.

4.2. Подшипники. Назначение и классификация. Подшипники скольжения: типы, области применения, достоинства и недостатки. Подшипники качения: классификация, их характеристики, области применения, достоинства и недостатки.

Подшипники

Подшипник - техническое устройство, являющееся частью опоры, которое поддерживает вал, ось или иную конструкцию, фиксирует положение в пространстве, обеспечивает вращение, качание или линейное перемещение (для линейных подшипников) с наименьшим сопротивлением, воспринимает и передаёт нагрузку на другие части конструкции.

Опора с упорным подшипником называется подпятником .

По направлению воспринимаемых нагрузок подшипник разделяют на радиальные (для восприятия нагрузок, перпендикулярных к оси вала), упорные (для восприятия нагрузок, направленных по оси вала), а также радиально-упорные (для восприятия комбинированных, преимущественно радиальных нагрузок; реже применяют упорно-радиальные - преимущественно для восприятия осевых нагрузок). По виду трения различают подшипники качения (получили наибольшее распространение) и подшипники скольжения

Основные типы подшипников, которые применяются в машиностроении:

· подшипники качения;

· подшипники скольжения;

· газодинамические подшипники;

· гидростатические подшипники;

· магнитные подшипники.

Подшипник скольжения

Подшипник скольжения - это опора или направляющая, в которой цапфа (опорная поверхность вала) скользит по поверхности вкладыша (подшипника) (рис. 90). Для уменьшения сил трения и износа подшипники смазывают. Основное применение имеют жидкие смазочные материалы, особенно при больших нагрузках и скоростях. Газообразные смазочные материалы (главным образом воздух) применяют для высокоскоростных опор. Для тихоходных опор используют пластичные смазочные материалы. Для подшипников, работающих, в экстремальных условиях, применяют самосмазывающиеся материалы, т. е. материалы, которые содержат компоненты или покрытия, обеспечивающие смазывание.

По направлению воспринимаемой нагрузки подшипники скольжения подразделяют, на две группы; радиальные и упорные (осевые). При совместном действии радиальных и осевых нагрузок применяют совмещенные опоры, в которых осевую нагрузку воспринимают торцы вкладышей (рис. 91) или специальные гребни.

По принципу образования подъемной силы в масляном слое подшипники делят на гидродинамические и гидростатические . Для разделения трущихся поверхностей слоем смазочного материала в нем необходимо создать избыточное давление. В гидродинамических подшипниках это давление возникает только при относительном движении поверхностей вследствие затягивания масла в клиновой зазор. В гидростатических подшипниках давление создается насосом. Основное распространение получили подшипники с гидродинамической смазкой как наиболее простые.

Подшипники скольжения применяют преимущественно в тех областях, в которых нецелесообразно или невозможно использовать подшипники качения:

при ударных и вибрационных нагрузках (используется хорошая демпфирующая способность масляного слоя);

при особо высоких частотах вращения;

для точных опор с постоянной жесткостью;

для опор с малыми радиальными размерами;

для разъемных опор;

для особо крупных и миниатюрных опор;

при работе в экстремальных условиях (высокие температуры, абразивные и агрессивные среды);

для неответственных и редко работающих механизмов.

Подшипники скольжения легче и проще в изготовлении, чем подшипники качения, бесшумны, обладают постоянной жесткостью и способностью работать практически без износа в режиме жидкостной и газовой смазки, хорошо демпфируют колебания.

К недостаткам подшипников скольжения можно отнести сложность системы смазки для обеспечения жидкостного трения, необходимость применения цветных металлов, повышенные пусковые моменты и увеличенные размеры в осевом направлении. При работе с жидкими и пластичными смазочными материалами температура подшипника не может превышать 150 °С. Однако некоторые самосмазывающиеся материалы допускают работу при температурах до 700 °С.

Подшипники скольжения широко применяют в двигателях внутреннего сгорания, паровых и газовых турбинах, насосах, компрессорах, центрифугах, прокатных станах, в тяжелых редукторах и других машинах.

Рис. 90. Радиальный подшипник скольжения: Рис. 91. Радиально-упорный

1 - корпус; 2 - вкладыш; 3 - отверстие для подачи подшипник скольжения

смазочного материала; 4 - цапфа; 5 - маслораздаточная канавка

Подшипник скольжения (см. рис. 90) содержит корпус 1, вкладыш 2 , смазывающие и защитные устройства. Корпус подшипника цельный или разъемный изготовляют как отдельную деталь либо деталь, присоединяемую к машине. Иногда корпус подшипника выполняют встроенным, т. е. как одно целое с корпусом машины или подвижной деталью (например, с шатуном). Вкладыши используют для того, чтобы не выполнять весь корпус из дорогих антифрикционных материалов. После износа вкладыши заменяют. В массовом производстве вкладыши штампуют из ленты с нанесенным на нее антифрикционным материалом, В мелкосерийном и единичном производстве применяют сплошные или разъемные втулки, а также биметаллические вкладыши, в которых тонкий слой антифрикционного материала наплавляют на стальную, чугунную или бронзовую основу. Для распределения смазочного материала, поступающего из канала 3, по рабочей поверхности цапфы 4 вкладыши снабжают смазочными канавками 5. Канавки располагают в ненагруженной зоне и часто совмещают с разъемом.

Износ рабочих поверхностей является основной причиной выхода из строя подшипников скольжения. Абразивное изнашивание связано с попаданием в смазочный материал абразивных частиц с размерами больше толщины масляного слоя и работой подшипника при неблагоприятных режимах трения в периоды пусков и остановок. При действии больших контактных давлений и температур возможно схватывание рабочих поверхностей подшипника.

Усталостные разрушения подшипников возникают при циклически действующих нагрузках, например, в поршневых машинах, машинах ударного и вибрационного действия. Значительное повышение температуры приводит к недопустимым изменениям необходимых свойств смазочных материалов, а иногда к выплавлению заливки вкладыша или заклиниванию вала в подшипнике. Разрушения подшипников могут быть также связаны с потерей устойчивости вращения цапфы при самовозбуждающихся колебаниях (автоколебаниях).

Подшипниковые материалы должны обеспечивать низкое значение коэффициента трения, высокую износостойкость и сопротивление усталости. Дополнительными требованиями являются хорошая теплопроводность, прирабатываемость, смачиваемость маслом, коррозионная стойкость и обрабатываемость, низкий коэффициент линейного расширения и низкая стоимость. Ни один из известных материалов одновременно всеми этими свойствами не обладает. Поэтому в технике применяют большое количество различных антифрикционных материалов, наилучшим образом отвечающих конкретным условиям.

Валы и оси, как правило, стальные, реже из высокопрочного чугуна, например, коленчатый вал двигателей ГАЗ. Цапфы должны иметь высокую твердость и шлифованную или полированную поверхность, чтобы выдержать несколько замен более дешевых, чем вал, вкладышей. Материалы вкладышей можно разделить на три группы: металлические материалы, металлокерамические и неметаллические.

Металлические материалы . Сплавы на основе олова или свинца с добавлением сурьмы, меди и других элементов, называемые баббитами (по имени американского изобретателя Баббита), обладают высокими антифрикционными качествами, хорошей прирабатываемостью, но дороги и имеют относительно невысокое сопротивление усталости. Их применяют в качестве тонкослойных покрытий или в качестве заливки. Хорошими антифрикционными свойствами обладают бронзы и латуни (сплавы на основе меди), алюминиевые и цинковые сплавы. В паре с закаленной цапфой при наличии хорошей смазки применяют антифрикционные чугуны.

Металлокерамические материалы .Пористые бронзографитовые и железографитовые материалы, получаемые методом порошковой металлургии, пропитывают горячим маслом и применяют в условиях, в которых невозможно обеспечить надежную жидкостную смазку. При небольших давлениях и скоростях эти материалы способны достаточно долго работать без внешнего подвода смазочного материала.

Неметаллические материалы. В качестве вкладышей применяют пластмассы, резину, графитовые материалы и прессованную древесину. Текстолит, ДСП (древесно-слоистый пластик) и прессованную древесину используют в подшипниках для тяжелого машиностроения. Полимерные самосмазывающиеся материалы на основе полиамидов, полиацетилена, политетрафторэтилена и различных смол используют для подшипников, работающих в температурном диапазоне −200...+280 °С при значительных скоростях скольжения. Фторопласты (полимеры и сополимеры галогенопроизводных, этилена и пропилена) обладают хорошими антифрикционными свойствами, химической инертностью, но высоким коэффициентом линейного расширения и низким коэффициентом теплопроводности. Подшипники с резиновыми вкладышами хорошо работают с водяной смазкой.

В экстремальных условиях используют графитовые вкладыши, которые обладают низким коэффициентом трения (f = 0,04...0,05) в температурном диапазоне от −200 до + 1000°C, хорошей теплопроводностью и коррозионной стойкостью. Эти материалы применяют в подшипниках с газовой смазкой, где они могут работать без смазочного материала в периоды пусков и остановок.

Основными критериями работоспособности подшипников являются износостойкость, сопротивление усталости антифрикционного слоя, теплостойкость и виброустойчивост ь.

Подшипники скольжения должны работать со смазочным материалом. Наилучшие условия для работы подшипников создаются при жидкостной смазке, когда осуществляется полное разделение трущихся поверхностей жидким смазочным материалом с объемными свойствами. При граничной смазке трение и износ определяются свойствами поверхностей и свойствами смазочного материала, отличными от объемных. При полужидкостной смазке частично осуществляется жидкостная смазка. Основной расчет подшипников скольжения - это расчет минимальной толщины масляного слоя, который при установившемся режиме работы должен обеспечивать жидкостную смазку. Тепловые расчеты проводят для определения рабочих температур подшипника. В ряде случаев проверяют подшипник на виброустойчивость путем решения дифференциальных уравнений гидродинамики. Расчеты по критерию износостойкости из-за сложности пока не нашли широкого применения.

Условные расчеты позволяют в простейшей форме оценить пригодность выбранного материала и размеров подшипника для конкретных условий работы на основании опыта конструирования и эксплуатации машин. Режим работы считают допустимым, если выполнены условия, которые ограничивают износ и тепловыделение:

р m = F r / (dl ) £ [p ]; p m v £[pv ]; v £ [v ]; t £ [ t ],

- диаметр цапфы; l - длина подшипника; v - окружная скорость цапфы; р m - среднее условное давление в подшипнике; t - температура подшипника.

Этот расчет обычно используют как основной для подшипников с полужидкостной смазкой и как предварительный для подшипников с жидкостной смазкой. В табл. 14 приведены допускаемые значения [р ], [v ] и [pv ]для некоторых подшипниковых материалов.

Таблица 14.

Допускаемые режимы работы для подшипниковых материалов

  • III. Требования к разделам обязательной части основной общеобразовательной программы дошкольного образования
  • IX. Второй этап компоновки редуктора. Второй этап компоновки имеет целью конструктивно оформить зубчатые колеса, валы, корпус, подшипниковые узлы и подготовить данные для проверки прочности валов
  • Звезда Смерти", палуба № 17, раздевалка подразделения тюремной охраны

  • 4.1 Оси и валы .

    В современных механизмах наиболее широко используется вращательное движение, которое поддерживается в установившемся режиме неограниченное время. Все движители, находящиеся во вращении, осуществляют это движение вокруг некоторых геометрических осей. Теоретические оси воплощаются на практике в валы и оси. По условиям изготовления и монтажа длину осей и валов во многих случаях ограничивают, составляя их из отдельных отрезков, соединенных между собой с помощью соединительных муфт.

    Оси и валы, несущие вращающие детали, должны опираться своими специально приспособленными для этого участками – цапфами (шипами) и пятами – на опорные устройства – подшипники и подпятники. Цапфы предназначены для восприятия радиальной, а пяты осевой нагрузок.

    Оси предназначаются только для направления движения и поддержания неподвижно, или свободно посаженных на них деталей и не передают крутящего момента от одной детали к другой. В связи с этим оси могут выполняться как вращающимися, так и неподвижными

    и воспринимать лишь поперечные (изгибающие), продольные (растягивающие и сжимающие) нагрузки.

    Оси и валы для обеспечения для обеспечения достаточной прочности при минимальной массе выполняются ступенчатой формы.

    Такая форма приближается к форме тела с разными сопротивлениями изгибу. Гладкие оси и валы нашли свое применение, вследствие простоты изготовления, их используют там, где на сопрягаемые с ними детали не действуют большие осевые нагрузки. Бывают такие валы коленчатые.

    Для уменьшения массы и габаритных размеров длину валов и осей ограничивают. Для уменьшения массы валы изготавливают полыми. Это не приводит к резкому снижению прочности осей и валов, если соотношение между внутренним и наружным диаметром. . Так при масса металла уменьшается примерно на 40%, с момента сопротивления, лишь на 15%. Применение полых осей и валов в ряде случаев позволяет использовать полость для монтажа электропроводов, пропуска жидкости, газов и т. п. Конструкции ступенчатых валов и осей весьма разнообразны. Выбор рациональной формы вала зависит от типа опор вращения, типа деталей насаживаемых на вал последовательности сборки и характера действующих сил. Основными критериями надежной работы валов и осей является жесткость и прочность. Для нахождения минимальных размеров вала, обеспечивающих достаточную прочность и жесткость, составляет расчетную схему. При этом вал рассматривают как балку, лежащую на шарнирных опорах и, нагруженную силами, действующими на закрепленную на ней детали. Условно считают, что сила, от детали, посаженной на вал, передается как сосредоточенная сила, приложенная посередине приложенных элементов (шпонки, штифты и т. п.). Силы реакции в опорах приложенные посередине шарикоподшипника и на расстоянии (0.2 + 0.35)l, в подшипнике скольжения (l – длина уапфы). Рассмотрим схему нагрузок и опорных реакций, а также эпюры изгибающих и вращательных моментов, действующих на вал, на котором закреплены цилиндрическое косозубое и коническое зубчатые колеса.



    Эпюры изгибающих моментов от составляющих нагрузок строятся в каждой плоскости осидально, и по ним находят эпюру результирующих моментов. Предварительный расчет валов выполняют с учетом условий прочности на кручение по пониженным допустимым напряжениям

    Отпуск диаметра вала

    Где = 10…30 МПа условное (пониженное) допустимое напряжение на кручение

    Основной расчет валов на кручение и изгиб выполняют по эквивалентному моменту. Эквивалентное нормальное напряжение для валов

    Опоры.

    Устройства, которые обеспечивают движение одной детали относительно другой в определенном направлении - называются направляющими.

    В соответствие с двумя простейшими видами движения (вращательным и поступательным) все направляющие можно разделить на направляющие для вращательного движения и направляющие для поступательного движения. Направляющие для вращательного движения называются опорами. В зависимости от вида трения направляющие могут работать с трением скольжения, качения и упругости. Для опор вращательного движения иногда используют трение о воздух или жидкость. Направляющие в точной механике должны удовлетворять следующим основным требованиям:



    Иметь минимальные силы трения и износа

    Обладать минимальными зазорами обеспечивающим наибольшую точность перемещения

    Быть надежными в работе в широком интервале температур

    Иметь плавный ход при передаче рабочего усилия

    Расчет направляющих в приборостроении подводиться, прежде всего, на трение ввиду незначительных передаваемых усилий, при необходимости на прочность, износ нагревание.

    Опоры для вращательного движения выполняются из двух деталей, образующих вращательную кинематическую пару – уапфы и подшипника, который часто делают виде втулки. Опоры должны предусматривать фиксацию осей либо уапфы от осевых и радиальных перемещения. Опоры вращательного движения в зависимости от вида трения можно разделить на опоры трения скольжения, качения и упругости. К специальным опорам можно отнести воздушные, жидкостные и магнитные. В зависимости от направления сил реакции возникающих в опорных узлах, опоры разделяются на подшипники (нагруженными поперечными силами) и по форме контактных деталей – на цилиндрические, конические, сферические. В зависимости от положения в пространстве и характера воспринимаемой нагрузки цилиндрические опоры делятся на горизонтальные, вертикальные, радиально – упорные и упорные.

    Пусть на цапфу действует нагрузка в виде вертикальной силы Q. Момент трения для новой непроработанной цапфы для прираб.

    Для твердого материала без смазки

    Уапфы, диаметр которых больше 1мм рассчитывают по общим формулам сопротивления материалов

    При проектном расчете определяют необходимый диаметр уапфы, задавая Q. Положив коэффициент длины уапфы

    Коэффициент длины уапфы характеризует условия эксплуатации опоры. может колебаться в пределах

    Также необходима проверка на критическую температуру работы опор

    Где - угловая скорость вращения уапфы – рад/с

    V - ее окружная скорость м/c

    Для повышения прочности цапф, особенно в условиях вибраций применяют уапфы с параболическим пропилом. Прочность параболической уапфы почти в 10 раз превосходит обычную, показанную штрих пунктиром. Для подвижной уапфы ее подшипник делают неподвижным, либо в виде цилиндрического отверстия непосредственно в самой стойке, либо в виде отдельной втулки.

    Цилиндрические опоры скольжения, воспринимающие осевые нагрузки, называются подпятниками или упорными подшипниками, форма и размер подпятников зависит от действующей нагрузки, скорости относительного скольжения и допустимого момента трения. Сплошная пята воспринимает значительные осевые нагрузки Q и работает при малых скоростях скольжения. Основным недостатком сплошной пяты является неравномерный износ в виду больших перепадов скоростей на ее поверхности, это приводит к увеличению в средней зоне давления, поэтому при значительных скоростях используют кольцевую пяту, износ которой наиболее равномерен. Во многих приборах с целью уменьшения трения применяют пяту со сферической поверхностью

    Размеры опорных поверхностей из условий выдавливания смазочного материала.

    Для сплошной пяты

    Для кольцевой

    Момент трения в сплошной пяте

    Для кольцевой

    Для сферической пяты момент трения

    Недостатком сферических опор является невозможность точного центрирования оси, вследствие гарантированного радиального зазора. Конические опоры могут воспринимать одновременно как радиальные, так и осевые нагрузки. По сравнению с цилиндрическими опорами, они более износостойкие, так как имеют большую рабочую поверхность. Они сложны в изготовлении и требуют индивидуальной притирки. Их делают обычно с двумя полосками, и они являются самоустанавливающимися. Моменты трения в конических опорах значительно больше, чем в цилиндрических и определяются углом .

    Опоры на центрах . Являются разновидностью конических опор. Их выполняют в виде двухсторонних сопряжений, конических уапф (центров) с подшипниками, имеющими раззенкованные цилиндрические отверстия.

    Контакт между трущимися деталями происходит по коническим поверхностям с малой длиной образующей, поэтому такие опоры могут воспринимать малые нагрузки (обычно 5…10 Н) и работать при малых частотах вращения.

    Опоры на центрах являются направляющими, в которых можно регулировать как осевые, так и радиальные зазоры.

    Момент трения зависит от угла при вершине конуса уапфы втулки принимают - угол при вершине конуса и 90 втулке.

    Шаровыми опорами называются опоры, рабочая поверхность которых представляет пояс шаровой формы. Эти опоры применяют, когда в процессе работы или регулировки механизма подвижная система кроме вращения вокруг оси, может поворачиваться вокруг опорного узла на некоторый угол.

    Шаровые опоры позволяют точно фиксировать положение оси. Однако они быстро изнашиваются. Применяют при низкой частоте вращения, при действии на опору только радиальной силы Р, момент трения

    В качестве подушечек используются каменные подшипники, изготовленные из рубина, корунда или агата. Кери изготавливают из стали марок У8А – У10А или кабальто-вольфрамового сплава. Твердость HRC – 55…60, полировка.

    Ножевые опоры относятся к опорам трения качения. Их применяют в приборах, подвижная система которых находиться в колебательном движении с углом поворота не более +-(8-10). Деталями являются нож с рабочей кромкой, представляющую цилиндрическую поверхность, весьма малого радиуса, и подушечка, опорная поверхность которой может иметь призматическую, цилиндрическую и плоскую поверхность. Наибольшее распространение получил ножевой треугольный профиль с углом при вершине 60 или 45(для стальных ножей) и 60-120 (для ножей из агата).

    При колебаниях поиска его рабочая кромка переламывается по поверхность подушки. Чем меньше радиус закругления, тем с большей точностью можно считать, что трение возникающее в опоре, является трением качения. Наибольшие распространение получили подушки призматической формы. Они просты в изготовлении по сравнению с цилиндрическими и сами обеспечивают центрирование.

    Применяемые материалы.

    Валы и оси вращаются в опорах, в качестве которых служат подшипники качения и скольжения. Опорные части валов и осей называют цапфами , при этом концевые цапфы для подшипников скольжения называют шипами , а промежуточные – шейками (рис. 27 а). Концевые опорные поверхности валов и осей, предназначенных для восприятия осевых нагрузок, называют пятами , а подшипники скольжения, в которых они размещаются, - подпятниками (рис. 27 б).

    Конструктивная форма вала или оси во многом определяется видом их соединения с насаженными на них деталями. Виды этих соединений весьма разнообразны и выбираются в соответствии с величиной и родом передаваемых нагрузок, а также требуемой точностью центрирования насаженных деталей. Чаще всего детали закрепляются на валу или оси шпонками или шлицами, либо посадкой с гарантированным натягом.

    Для осевого фиксирования деталей (зубчатых колёс, подшипников и др.) на валах выполняют упорные буртики или заплечики (рис. 28). Переходные участки валов между соседними ступенями разных диаметров выполняют радиусной галтелью (рис. 28 а) или в форме канавки (рис. 28 б).

    Для изготовления валов и осей используют углеродистые стали марок 20, 30, 45 и 50, легированные стали марок 20Х, 40Х 40ХН и др.

    Выбор материала, термической и химико-термической обработки определяется конструкцией вала и опор, условиями эксплуатации.

    Общие сведения об опорах валов и осей

    Опорами называют устройства, обеспечивающие вращение подвижных частей механизма и непосредственное восприятие давления со стороны вала или оси. В зависимости от вида трения опоры (подшипники) бывают с трением скольжения и трением качения .

    Опоры с трением скольжения имеют следующие преимущества :

    – они могут работать при высоких скоростях и нагрузках в агрессивных средах;

    – они малочувствительны к ударным и вибрационным нагрузкам;

    – их можно устанавливать в местах, недоступных для установки подшипников качения, например на шейках коленчатых валов.

    К основным недостаткам опор с трением скольженияотносятся:

    – более высокие потери на трение при обычных условиях;

    – усложнённые системы смазки тяжело нагруженных, быстроходных подшипников;

    – необходимость постоянного контроля смазки (исключение представляют приборные подшипники из фторопласта и капрона, а также металлокерамические подшипники);

    – необходимость применения дефицитных материалов и высокой твёрдости поверхности цапф;

    – большие осевые габариты;

    К достоинствам опор с трением качения относятся:

    – малые потери на трение и моменты сопротивления при трогании с места;

    – относительная простота сборки и ремонта механизмов;

    – малые габариты в осевом направлении.

    Недостатками этих опор являются:

    – повышенная чувствительность к ударным и вибрационным нагрузкам,

    – повышенные радиальные габариты.

    Надёжность работы подшипников в значительной мере определяет работоспособность и долговечность машин.

    Подшипники скольжения

    Общие сведения

    Подшипник скольжения (рис. 29 ) – это пара вращения, состоящая из опорного участка вала (цапфы ) 1 и самого подшипника 2 , в котором скользит цапфа.

    Благодаря указанным выше достоинствам, а также по конструктивным и экономическим соображениям опоры скольжения находят широкое применение в паровых и газовых турбинах, двигателях внутреннего сгорания, центробежных насосах, центрифугах, металлообрабатывающих станках, швейном оборудовании. Они отличаются большим разнообразием конструктивных форм составных частей.

    По виду трения скольжения различают подшипники: сухого трения , работающие на твёрдых смазочных материалах или без смазочного материала; граничного трения , при котором слой смазки, разделяющий подшипник и цапфу вала, составляет не более 0,1 мкм; жидкостного трения и с газовой смазкой .

    По виду воспринимаемой нагрузки подшипники подразделяют на: радиальные , воспринимающие радиальную нагрузку (рис. 30 а); радиально-упорные , если подшипник может кроме радиальной нагрузки воспринимать частично и осевую (рис. 30 б, в); упорные , воспринимающие осевую нагрузку (рис. 30 г).

    Форма рабочей поверхности подшипников и цапф может быть цилиндрической (рис. 30 а), конической (рис. 30 б), шаровой (рис. 30 в) и плоской (рис. 30 г). Конические и шаровые подшипники применяются редко. Условия работы подшипников скольжения определяются основными параметрами режима работы: удельной нагрузкой р и угловой скоростью ω.

    3.4.2. Конструкции подшипников скольжения

    Подшипники скольжения состоят из двух основных частей: корпуса и подшипниковой втулки (вкладыша), контактирующей с цапфой вала. Применение вкладышей позволяет изготовлять детали корпусов из дешёвых материалов и облегчает ремонт. В малогабаритных и неответственных подшипниках вкладыши иногда отсутствуют, их назначение в этом случае выполняет корпус.

    Конструкции деталей корпусов и вкладышей разнообразны и зависят от конструкции механизмов и машин в целом, условий монтажа и эксплуатации.

    Конструкции опор с подшипниками скольжения можно условно разделить на подшипники с неразъёмным корпусом и разъёмным .

    Подшипники с неразъёмным корпусом сравнительно просты и дешёвы, но сложны при монтаже (требуется осевой сдвиг вала, не допускается регулировка зазора). Это ограничивает их использования малоответственными тихоходными конструкциями.

    Разъёмные стандартные подшипники широко применяются в различных конструкциях.

    Разъёмный подшипник (рис. 31) состоит из корпуса 1 , крышки 2 , вкладыша 3 , крепёжных болтов с гайками 4 и маслёнки 5 . Разъём вкладыша делают по его диаметру, а разъём корпуса – ступенчатым. Уступ в ступенчатом разъёме препятствует поперечному сдвигу крышки относительно корпуса подшипника.

    Разъём вкладыша обычно выполняют в плоскости, перпендикулярной радиальной нагрузке. Смазку осуществляют различными смазочными материалами с помощью колпачковых маслёнок или жидкими маслами с помощью капельных маслёнок, например в швейных машинах.

    Подшипниковые втулки (вкладыши) выполняют в стандартном и оригинальном исполнении цилиндрическими без бурта (буртов) для радиальной нагрузки (рис. 32 а) и с буртом (буртами) для восприятия одно- или двусторонней осевой и радиальной сил (рис. 32 б, в, г) . Их изготавливают неразъёмными (рис. 32) и разъёмными (рис. 33).

    Для распределения смазки по длине вкладыша на его внутренней поверхности делают канавки или выемки (карманы) (рис. 33). Их располагают в месте подвода смазки. Расположение и форма канавок и каналов, подводящих смазочный материал, зависят от конструкции опоры и особенностей эксплуатации. От осевого перемещения вкладыши фиксируют с помощью винтов или штифтов (рис. 34).

    Вкладыши изготовляют из материалов с высокими антифрикционными свойствами, обладающими хорошей теплопроводностью, прирабатываемостью и смачиваемостью смазочными материалами, твёрдостью.

    Наиболее распространёнными материалами вкладышей являются баббиты Б16 и Б83 , бронзы БрО10Ф1 , БрА9Ж3Л и др., латунь ЛМцОС58-2-2-2 , антифрикционные чугуны АСЧ1, АСЧ-2, АСЧ-3 и др.

    Вкладыши малонагруженных и низкооборотных механизмов изготовляют из металлокерамики, пластмасс. Втулки и вкладыши подшипников скольжения, изготовленные из неметаллических материалов (текстолит, резина, капрон и др.), стоят дешевле металлических. Они обладают хорошими антикоррозионными свойствами, могут работать без смазки или с водяной смазкой, имеют повышенную нагрузочную способность и сопротивляемость удару, износостойки и не склонны к заеданию.

    Практика эксплуатации подшипников скольжения показала, что их работа в условиях сухого и граничного трения сопровождается изнашиванием. Отказы таких подшипников происходят из-за заедания (диффузионной сварки), пластического деформирования, абразивного изнашивания, особенно опасного при засорении смазочного материала, а также усталостного разрушения и отслаивания фрикционного слоя при вибрационных и ударных нагрузках. Эти повреждения зависят от удельной нагрузки, скорости, вязкости материала и других параметров режима работы, используемых в качестве критериев работоспособности.

    Подшипники жидкостного трения работают без изнашивания, если не нарушается режим смазки. В связи с этим для них основным критерием работоспособности является номинальная толщина слоя смазочного материала, исключающая контакт микронеровностей цапфы и подшипника (вкладыша).

    Вал – вращающаяся деталь машины, предназначенная для поддержания установленных на нём деталей и для передачи вращающегося момента ().

    Рисунок 1 – Прямой ступенчатый вал: 1 – шип; 2 – шейка; 3 – подшипник

    Ось – деталь машины, предназначенная только для поддержания установленных на ней деталей (). Ось не передаёт вращающегося момента. Оси могут быть подвижными и неподвижными.

    Рисунок 2 – Ось тележки

    По геометрической форме валы делятся на прямые, коленчатые и гибкие (). Оси, как правило, изготовляют прямыми.

    Рисунок 3 – Конструкции валов

    Прямые валы и оси могут быть гладкими или ступенчатыми. Образование ступеней связано с различной напряжённостью отдельных сечений, а также условиями изготовления и сборки. По типу сечения валы и оси бывают сплошные и полые. Полое сечение применяется для уменьшения массы и для размещения внутри другой детали.

    Цапфа – участок вала или оси, располагающийся в опорах. Цапфы подразделяются на шипы, шейки и пяты ().

    Рисунок 4 – Конструкции цапф

    Шипом называется цапфа, расположенная на конце вала или оси и передающая преимущественно радиальную нагрузку.

    Шейкой называется цапфа, расположенная в средней части вала или оси. Опорами для шипов и шеек служат подшипники. Шипы и шейки по форме могут быть цилиндрическими, коническими и сферическими. В большинстве случаев применяются цилиндрические цапфы.

    Пятой называют цапфу, передающую осевую нагрузку. Опорами для пят служат подпятники. Пяты по форме могут быть сплошными (), кольцевыми (), гребенчатыми ().

    Рисунок 5 – Конструкции пят

    Посадочные поверхности валов и осей под ступицы насаживаемых деталей выполняют цилиндрическими и коническими. При посадках с натягом диаметр этих поверхностей принимают больше диаметра соседних участков для удобства напрессовки. Диаметры посадочных поверхностей выбирают из ряда нормальных линейных размеров, а диаметры под подшипники качения – в соответствии со стандартами на подшипники.

    Переходные участки () между двумя ступенями валов или осей выполняют:

    Рисунок 6 – Переходные участки валов

    Рисунок 7 – Конструкции переходных участков валов

    Эффективным средством для снижения концентрации напряжений в переходных участках являются:

    Рисунок 8 – Способы повышения усталостной прочности валов

    Деформационное упрочнение (наклёп) галтелей обкаткой роликами повышает несущую способность валов и осей.

    Валы и оси при работе испытывают циклически изменяющиеся напряжения. Основными критериями работоспособности являются сопротивление усталости () и жёсткость. Сопротивление усталости валов и осей оценивается коэффициентом запаса прочности, а жёсткость – прогибом в местах посадок деталей и углами наклона или закручивания сечений.

    Рисунок 9 – Конструктивные средства повышения сопротивления валов усталости в местах посадки

    Основными силовыми факторами являются крутящие и изгибающие моменты. Влияние растягивающих и сжимающих сил невелико и в большинстве случаев не учитывается.

    Перечень ссылок

    1. Валы и оси // Детали машин. – http://www.det-mash.ru/index.php?file=valy_osy .

    Вопросы для контроля

    1. В чём состоит отличие вала от оси?
    2. Какие бывают валы по конструктивному исполнению?
    3. Чем отличаются различные разновидности цапф?
    4. Какими способами достигается снижение концентрации напряжений на переходных участках валов?
    <
    Похожие публикации