Методы подбора сменных зубчатых колес гитар. Коробка подач в форме гитары сменных колес

Гитара - узел станка, предназначенный для изменения скорости подач. Гитары сменных колес дают возможность настраивать подачу с любой степенью точности.


а, в, с, d - числа зубьев сменных колес.

Для правильного подбора сменных колес необходимо выполнить условие сцепляемости.

а + в>с + 22 - должны выполняться

с + d > в + 22 одновременно.

Каждую гитару снабжают определенным комплектом сменных зубчатых колес.

Сменные колеса подбирают различными способами. Самый простои способ разложение на множители.

Условие сцепляемости выполнено

Реверсивные механизмы

Служат для изменения направления движения. Они имеют различные конструкции.

С подвижными блоками и промежуточным 2. С различными типами сменных муфт и промежуточным колесом. колесом.


Конический трензель.


Мальтийский механизм.

Применяется для периодических поворотов рабочих органов станка на требуемый угол.

При непрерывном вращении кривошипа 1 палец 2 периодически входит в пазы мальтийского диска 3 и поворачивает его на угол α .

Храповый механизм.

Служит для преобразования непрерывного вращательного движения в прерывистое и для поворота на требуемый угол.


1 палец 2 сообщает шатуну 3 возвратно-поступательное движение. Шатун поворачивает рычаг 4 влево-вправо. При повороте вправо собачка 5 скользит по зубьям храпового колеса 6 . При повороте влево собачка попадает в межзубую впадину и поворачивает храповое колесо на требуемый угол, зависящий от радиуса кривошипного диска.

Кулисный механизм.

При непрерывном вращении кривошипного диска 1 палец 2 сообщает кулисе 3 возвратно-вращательное движение, а кулиса через палец 4 сообщает рабочему органу 5 возвратно-поступательное движение.

Применяется в зубодолбежных станках.

Кривошипно-шатунный механизм.

Служит для преобразования вращательного движения в возвратно-поступательное.

От вращения кривошипного диска 1 с радиально подвижным пальцем 2 движение через раздвижной шатун 3 , качающийся рычаг 4 с зубчатым сектором передается круглой рейке 5 , закрепленной на шпинделе 6 . За счет радиального перемещения пальца2 можно регулировать ход шпинделя 6 , а за счет изменения длины шатуна 3 - крайние положения инструмента, закрепленного в шпинделе.

Применяется в долбежных и поперечно-строгальных станках.

Этот механизм обеспечивает хорошую плавность движения рабочего органа станка, однако имеет неравномерную скорость рабочего хода.


Кулачковые механизмы.

Служат для преобразования вращательного движения в поступательное.

Применяются в основном на автоматах.

1 - дисковый кулачок

2 -палец

3 - пружина, обеспечивающая постоянный контакт пальца
с рабочей поверхностью кулачка.

Блокировочные механизмы.

Предназначены для предотвращения одновременного включения нескольких механизмов, совместная работа которых недопустима

а) б)


Рисунок, а - нейтральное положение в котором можно включать или рукоятку 1 или рукоятку 2 .

Рисунок, б - рукоятка 1 включена, а рукоятка 2 заблокирована


Предохранительные устройства

Служат для предохранения станка от перегрузок. Они подразделяются на электрические, гидравлические и механические или комбинированные. Особенно широко применяются электрические предохранительные устройства и предохранительные муфты. Из механических предохранительных устройств наибольшее распространение получили срезные штифты и шпонки, падающие червяки.

Ограничители хода.

Устанавливаются для того, чтобы движущаяся часть станка не доходила до опасного конечного положения. Салазки 2 при встрече с жестким упором 1 останавливается, и фрикционная муфта 3 начинает буксовать. Так продолжается до тех пор, пока не будет выключен электродвигатель или салазки не будут отведены от упора.

Тормозные устройства.

Применяются для остановки или замедления движения отдельных механизмов станка.

После выключения станка отдельные механизмы движутся по инерции. Это время называется временем выбега .

Для уменьшения времени выбега на быстроходных валах станков устанавливают различные тормозные устройства.

Торможение может осуществляться механическими, электрическими и пневматическими средствами.

Основными видами механических тормозов являются ленточные и колодочные тормоза.

Шкив - чугунный, лента - асбестомедная.

При выключении станка лента 2 прижимается к шкиву 1 и за счет силы трения обеспечивается торможение.


У колодочного тормоза колодки 1 и 6 соединены общей тягой 3 , длину которой можно регулировать рейкой 2 , устанавливая тем самым необходимый зазор между колодками и шкивом 7 для нерабочего положения. В процессе торможения колодки стягиваются тягой 4 от приводного механизма 5 .

Механизмы суммирования движений.

Планетарные передачи.

Планетарной называют зубчато-реечную передачу, в которой часть зубчатых колес (сателлитов) перемещается со своими осями относительно центрального колеса вместе с водилом.

Звено, на котором установлены зубчатые колеса с подвижными осями, называется водилом .

Сателлит - это зубчатое колесо с подвижной осью вращения, которое одновременно вращается вокруг своей оси и совершает движение вместе с водилом.

Планетарная передача с цилиндрическими колесами.

М1 и М2 - двигатели

I - центральная ось

II - подвижная ось

III - водило

Z 1 и Z 4 - центральные колеса

Z 2 и Z 3 - сателлиты.

При включении М1 , Z 1 вращает Z 2 . Z 2 обкатывается вокруг Z 1 и одновременно с ним Z 3 обкатывается вокруг неподвижного Z 4 , водило получает некоторое количество движений. Если дополнительно включить М2 , через червячную передачу начинает вращаться Z 4 , которое вращает Z 3 следовательно водило сообщается дополнительное движение.


Планетарные передачи с коническими колесами

(дифференциальные механизмы).

У этих передач из трех звеньев любые два могут быть ведущими, а третье - ведомым. Дифференциал состоит из центральных колес Z 1 и Z 4 , сателлитов Z 2 и Z 3 и водила 1 . Как правило, зубчатое колесо Z 4 вращается с большей частотой, а колесо Z 1 - с меньшей. Вращение колесу Z 1 передается от червячной пары 2 .

Муфты служа для постоянного или периодического соединения двух соосных валов и для передачи при этом вращения от одного вала к другому.

Различают муфты постоянные , служащие для постоянного соединения валов; сцепные , соединяющие и разъединяющие валы во время работы; предохранительные , предотвращающие аварии при внезапном превышении нагрузок; муфты обгона, передающие вращение только в одном направлении.


Постоянные муфты.

Применяют в тех случаях, когда нужно соединить два вала, которые в процессе работы не разъединяются. При этом валы могут быть соединены жестко или с помощью упругих элементов.

Сцепные муфты

Применяют для периодического соединения валов, например, в приводе главного движения или приводе подач станков.

В станках часто применяются сцепные кулачковые муфты в виде дисков с торцовыми зубьями-кулачками и зубчатые муфты.

Зубчатые колеса насаженные на вал I находятся в постоянном зацеплении с зубчатыми колесами насаженными на ведомые валы II и III . Подключение валов II и III к ведущему, производится муфтами КМ1 и КМ2

1 - зубчатое колесо

2 - втулка, запрессованная в отверстие
зубчатого колеса

3 - вал

4 - стопорное кольцо

5 - кулачковый венец

6 - кулачковая муфта

В зависимости от точности изготовления кулачков различают точные и неточные кулачковые муфты. У точных муфт передача крутящего момента осуществляется несколькими кулачками, у неточных - одним кулачком.

Недостатком сцепных муфт является то, что при больших разностях скоростей вращения ведущего и ведомого элементов, муфты нельзя включить.

Фрикционные сцепные муфты.

Имеют тоже назначение, что и кулачковые. Фрикционные муфты можно включать при любых разностях скоростей вращения элементов муфты. У них при перегрузках ведомое звено может проскальзывать и тем самым предотвращать аварию. Наличие нескольких поверхностей трения дает возможность передавать значительные крутящие моменты при относительно малых величинах давления на поверхностях трения дисков.

Применяются механические и электрические фрикционные муфты. Из электрических фрикционных муфт большое применение нашли электромагнитные муфты.


Предохранительные муфты.

Предназначены для предохранения механизмов станка от аварий при перегрузках. У муфт (рис. а, б) предохраняющим звеном является штифт 1 , сечение которого рассчитывают в зависимости от передаваемого крутящего момента. При перегрузках этот штифт срезается, происходит разрыв соответствующей кинематической цепи и тем самым предотвращает повреждение деталей станка.


Муфта обгона.

Предназначены для передачи крутящего момента при вращении звеньев кинематической цепи в заданном направлении и для разъединения звеньев при вращении в обратном направлении, а также для сообщения валу двух различных движений (медленного - рабочего и быстрого - вспомогательного), которые осуществляются по двум отдельным кинематическим цепям. Муфта обгона позволяет включать цепь быстрого хода, не выключая цепи рабочего движения.

В качестве муфты обгона можно использовать храповые механизмы (рис. а) и муфту роликового типа (рис. б).

Вал 2 вращается от вала 1 через конические колеса Z 3 /Z 4 и храповый механизм (колесо Z 4 свободно посажено на валу 2 ). Если одновременно включить цепь быстрого хода через передачу Z 1 /Z 2 , то вал 2 вместе с храповым колесом 4 будет вращаться быстрее зубчатого колесаZ 4 и собачка 3 будет проскальзывать.

1 - корпус

2 - кольцо

3 - ролик

4 - штифт

5 - пружина

Если ведущей частью является кольцо 2 , то при вращении против часовой стрелки ролики увлекаются трением в узкую часть выемки и заклиниваются кольцом и корпусом муфты. В этом случае корпус 1 и связанный с ним вал будут вращаться с угловой скоростью кольца 2 . Если при продолжающемся движении кольца 2 против часовой стрелки валу и корпусу 1 сообщить движение по другой кинематической цепи, направленное в ту же сторону, но имеющее скорость, большую по величине, чем скорость кольца 2 , то ролики переместятся в широкую часть выемки и муфта окажется расцепленной. При этом детали 1 и 2 будут вращаться каждая со своей скоростью.

Ведущим элементом может быть любая из деталей 1 и 2 . Если ведущим является корпус, то муфта сцепляется при его вращении по часовой стрелке или когда корпус, вращаясь в этом направлении, опережает кольцо.

Методика кинематической наладки металлорежущих станков.

Кинематическая наладка станка заключается в согласовании движений исполнительных органов. Методика наладки одинакова для большинства станков и не зависит от их сложности. Для примера рассмотрим наладку токарно-винторезного станка на нарезание резьбы.


Рр


Чтобы нарезать резьбу на заготовке 1 , необходимо сообщить суппорту 3 с резцом 2 продольную подачу вдоль оси заготовки, согласованную с частотой вращения шпинделя 5 . Следовательно, нужно рассчитать две кинематические цепи: скоростную (цепь главного движения) и нарезания резьбы.

Рассмотрим кинематическую цепь главного движения. Шпиндель 5 с заготовкой 1 получает вращение от электродвигателя через ременную передачу и три пары зубчатых колес. Частоту вращения шпинделя рассчитывают по формуле

где V - скорость резания, м/мин (выбирается по справочнику режимов резания)

d - диаметр заготовки, мм.

Составим уравнение кинематической цепи от электродвигателя к шпинделю при условии, что шпиндель должен вращаться с частотой

где n - частота вращения вала электродвигателя, мин -1 ;

0,985 - коэффициент, учитывающий скольжение ремня.

Уравнение можно представить в общем виде:

гдеi пост - постоянное передаточное отношение характеризующее цепь,

i см - сменное передаточное отношение механизма наладки.

В рассматриваемой кинематической цепи известны все величины, за исключение сменных колес а - в, являющихся механизмом наладки.

Подставив численные значения, получим

Определим значение

Определим колеса а и b и тем самым произведем наладку цепи главного движения. Затем приступим к наладке кинематической цепи движения подачи или цепи нарезания резьбы. Резец 2 , укрепленный на суппорте 3 , получает движение от ходового винта 4 , который приводится во вращение от шпинделя 5 через пару цилиндрических колес, две пары конических колес и сменные зубчатые колеса с – d и е-f .

Составим уравнение кинематического баланса, исходя из условия, что за один оборот шпинделя резец переместится вдоль оси заготовки на величину шага Рр нарезаемой резьбы

В общем виде это уравнение будет выглядеть следующим образом:

где Рр - шаг нарезаемой резьбы; Рх.в. - шаг ходового винта,

В рассматриваемой цепи

Подобрав сменные колеса c – d, e – f, произведем наладку цепи движения подачи. При кинематической наладке станков необходимо:

1. Выяснить характер движения рабочих органов и их согласованность;

2. Выявить все кинематические цепи станка;

3. Составить уравнение кинематической цепи, связывающих попарно рабочие органы станка;

4. Определить передаточные отношения механизма наладки и подобрать в соответствии с ними сменные зубчатые колеса или другие элементы наладки.

Пример. Настроить станок по следующим данным: n = 240 мин -1 ; Рр = 4 мм; А=В = 80

Проверяем условие сцепляемости

Станки с программным управлением

Программное управление (ПУ) – это совокупность команд, обеспечивающих функционирование рабочих органов станка в заданной последовательности. Все без исключения станки с ПУ работают по программе. В одних случаях программа находится в памяти рабочего органа, в других - задается при помощи материальных аналогов (эталонной детали, копира или кулачков). Изготовление материальных аналогов и переналадка таких станков требует высокой квалификации и больших затрат времени, поэтому такие станки применяются в крупносерийном производстве.

В мелкосерийном производстве, которое занимает до 80% широко применяются станки с ПУ в которых программа записывается на программоносителе, в качестве которых применяют перфоленту, магнитный диск, программируемый контроллер.

На программоносителях программа может записываться в кодированном и декодированном виде. Изготовление программы и переналадка станков не требует высокой квалификации и не отнимает много времени.

Станки с ПУ классифицируются также как и станки с ручным управлением.

В обозначении моделей станков с ПУ после цифр пишутся следующие буквы:

Ц - станки с цикловым программным управлением (ЦПУ)

Ф - станки с числовым программным управлением (ЧПУ)

Т - станки с оперативной системой ЧПУ.

В станках с ЦПУ технологическая информация записывается на программоносителе, а геометрическая - устанавливается при помощи переставных упоров. Установка и выверка упоров при наладке отнимает много времени поэтому станки с ЦПУ применяют в крупносерийном производстве.

В станках с ЧПУ вся информация записывается на программоносителе.

В станках с оперативной системой ЧПУ информация набирается оператором непосредственно на рабочем месте при помощи клавиатуры, расположенной на мини ЭВМ.

Цикловое программное управление.

Системой циклового программного управления (ЦПУ) называют такую систему программного управления, в которой полностью или частично программируются цикл работы станка, режимы обработки и смена инструмента, а величина перемещений рабочих органов задается с помощью предварительно налаживаемых упоров.

Цикл работы станка - это совокупность всех движений, необходимых для обработки заготовок и выполняемых в определенной последовательности.

Системой ЦПУ оснащают токарно-револьверные, токарно-копировальные, копировально-фрезерные, алмазно-расточные и другие станки. Системы ЦПУ используют в автоматических линиях с использованием ЭВМ дня диагностики и планирования работы линии, а также для управления промышленными роботами.

Функциональная схема системы ЦПУ.

В схему входят: программатор циклов, схема автоматики, исполнительное устройство и устройство обратной связи.

Программатор циклов состоит из блока задания программы 1 и блока поэтапного ввода программы 7 . Из блока задания программы 1 информация поступает в схему автоматики, состоящую из схемы управления циклом работы станка 2 и схемы преобразования сигналов контроля 6 . Схема автоматики согласует действия программатора циклов с исполнительными элементами станка и датчиком обратной связи, может выполнять ряд логических функций. Схему автоматики в системах ЦПУ чаще всего строят на электромагнитных реле. Из блока 2 сигналы поступают в исполнительное устройство, обеспечивающее отработку заданных программой команд.

Исполнительное устройство состоит из исполнительных элементов 3 (приводы, муфты и т.д.) и рабочих органов станка 4 (суппорт, насосы, столы, револьверные головки). Рабочие органы отрабатывают этап программы, а датчик 5 контролирует окончание отработки и дает команду блоку 7 через блок 6 на переключение следующего этапа программы.

Программаторы циклов.

Состоят из блока задания программы и блока поэтапного ввода программы. Блок задания программы запоминает и вводит в систему полную программу, блок поэтапного ввода программы предназначен для последовательного считывания этапов программы и ввода их в систему для отработки.

Наиболее распространенным программатором электрического типа является штекерная панель . Программа на штекерной панели задается вручную, станок в этот период простаивает. Для безопасного и быстрого набора программ может быть использован накладной бумажный шаблон. Шаблон накладывают на штекерную панель, а штекеры вводят в гнезда через отверстия в шаблоне. Пробитые в соответствии с программой.

Распространенным программатором механического типа являются кулачковые командоаннараты и программаторы с перфолентами .

Кулачковые командоаппараты – это программаторы механического типа с кинематическим заданием программы. В гнезда барабана 2 командоаппарата закладывают шарики или штифты 1 , которые при его повороте воздействуют на электрические контакты или конечные выключатели 3 , включая цепи соответствующих исполнительных органов. Барабан приводится во вращение храповым механизмом с электромагнитом или шаговым двигателем.

Программаторы с перфолентами или перфокартами применяют при большом объеме информации. Считывание программы осуществляется либо электромеханическим способом, либо фотоэлементами.

Наиболее удобным являются универсальные системы ЦПУ, построенные с использованием микроэлектроники. К таким системам относятся программируемые контроллеры.

Программируемый контроллер - это управляющая логическая машина последовательного действия, созданная на базе вычислительной техники, релейной бесконтактной автоматики и ЦПУ оборудованием. Они надежны, долговечны, имеют небольшие габариты, обеспечивают возможность быстрого изменения программы, легко специализируются в зависимости от конкретной обработки.

Программируемый контроллер (ПК) состоит из центрального процессора 1 (управляющего устройства), постоянного запоминающего устройства 2 , входного 3 и выходного 4 устройств и сканатора 5 (генератора импульсов). К контроллеру можно подключить программную панель 6 (загрузчик программ), содержащую декадные переключатели и клавиши. Программу вводят последовательно нажатием клавишей с обозначением логических элементов. В режиме записи программа записывается в устройство 2 и запоминается в нем. В режиме работы сканатор 5 поочередно подключает к процессору 1 входное и выходное устройства. В процессоре 1 согласно программе производятся заданные логические операции. К контроллерам могут подключаться дисплеи, накопители на магнитных кассетах, печатающие устройства, регистрирующие состояние оборудования, затраты основного и вспомогательного времени, аварийные ситуации и т.д.

Числовое программное управление.

Классификация систем ЧПУ.

Система ЧПУ (СЧПУ) - совокупность методов устройств, обеспечивающее ЧПУ станков.

Устройство ЧПУ (УЧПУ) - составная часть СЧПУ, выдающая команды на выполнение конкретного действия.

СЧПУ различают по следующим признакам:

I. По назначению

1. (Ф1) - станки с цифровой индикацией и преднабором координат;

2. Позиционные и прямоугольные (Ф2) - позволяют автоматически установить рабочие органы в позицию, заданную программой управления станком, причем в период перемещения рабочего органа обработка не ведется.

3. Контурные (непрерывные) (ФЗ) - обеспечивают автоматическое перемещение рабочего органа по произвольной траектории с контурной скоростью, заданной программой управления станком. Траектория обработки обеспечивается совместным и взаимосвязанным движением нескольких исполнительных устройств.

4. Комбинированные (универсальные) (Ф4) - обеспечивают обработку сложных профилей деталей по нескольким координатам одновременно, точное позиционирование ускоренных перемещений.

С конусом зубчатых колес и накидной шестерней (конус Нортона).

II накидное колесо Z 0 можно поочередно вводить в зацепление с колесами установленными на валу I .

I - ведущий вал; II - ведомый вал

При перемещении корпуса по валу II накидное колесо Z 0 можно поочередно вводить в зацепление с колесами, установленными на валу I .

I - ведущий вал;

II - ведомый вал

Передача движения с ведущего на ведомый вал осуществляется через зубчатое колесо 2 , вращающееся на пальце 5 рычага 4 , который может

подниматься или опускаться, тем самым колесо 2 либо входит в зацепление с колесом 3 либо расцепляется с ним.

Недостатки:

1. Невысокий КПД, т.к. в работе постоянно участвует промежуточное звено.

2. Более сложная конструкция.

3. Под действием распорной силы, возникающей в зубчатом зацеплении механизм может разомкнуться, поэтому для фиксации рычага требуются дополнительные устройства.

4. Механизм служит для передачи небольших крутящих моментов.

5. Малая жесткость.

Применяется в токарно-винторезных станках. В одном ряду можно расположить до 12 передач.

При К передаче требуется К + 2 колеса.

Гитара - узел станка, предназначенный для изменения скорости подач. Гитары сменных колес дают возможность настраивать подачу с любой степенью точности.


а, в, с, d - числа зубьев сменных колес.

Для правильного подбора сменных колес необходимо выполнить условие сцепляемости.

а + в>с + 22 - должны выполняться

с + d > в + 22 одновременно.

Каждую гитару снабжают определенным комплектом сменных зубчатых колес.

Сменные колеса подбирают различными способами. Самый простои способ разложение на множители.

Условие сцепляемости выполнено

Федеральное государственное автономное образовательное

учреждение высшего образования

«Санкт-Петербургский государственный политехнический университет»

Институт металлургии, машиностроения и транспорта

________________________________________________________

Кафедра "Технологические процессы и оборудование автоматизированных машиностроительных производств"

Способы подбора сменных зубчатых колес металлорежущих станков

Методические указания к лабораторной работе

Направление: 15.03.05 – "КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МАШИНОСТРОИТЕЛЬНЫХ ПРОИЗВОДСТВ"

Профиль: 15.03.05_05 – "Технология, оборудование и автоматизация машиностроительных производств

Санкт-Петербург

Способы подбора сменных зубчатых колес металлорежущих станков. Методические указания к лабораторной работе для студентов по направлению 15.03.05. Содержат описание устройства и методов настройки гитар сменных зубчатых колес.

Составители:

д.т.н., профессор Калинин Е.П.

к.т.н., доцент Портнов С.В.

ст. препод. Никитин А.В.

Рецензенты:

Методические указания утверждены на заседании кафедры «Резание, станки и инструменты» « » ________ 20__ года протокол № ___

Научный редактор - д.т.н., профессор Д.В. Васильков

1. Цель работы

Изучение устройства и методов настройки гитар сменных зубчатых колес.

2. Общие сведения о гитарах сменных колес

Сменные зубчатые колеса применяют для изменения передаточных отношений различных кинематических цепей. Устройства со сменными зубчатыми колесами называют гитарами. В зависимости от числа пар сменных колес, устанавливаемых в гитаре, различают однопарные, двухпарные и трехпарные гитары. Колеса устанавливают на концы валов, оси которых неподвижны в пространстве или могут переставляться. Использование гитар с переставным валом или осью дает возможность подбирать сменные зубчатые колеса независимо от межосевого расстояния (в определенных пределах). При этом количество колес с различными числами зубьев, которые можно установить в гитаре, возрастает, точность подбора требуемого передаточного отношения повышается.

3. Однопарные гитары

Рис. 1. Схема однопарной гитары

Числа зубьев колес 1 и 2 однопарной гитары определяются из уравнений:

(1)

(2)

а - делительное межосевое расстояние, мм; m - модуль, мм.

При конструировании однопарных гитар суммарное число зубьев z c обычно устанавливают из ряда 60, 72, 90, 120. Так как число неизвестных z 1 и z 2 равно числу уравнений, то искомые числа зубьев однозначно определяются из этих уравнений. Числа зубьев колес могут быть только целыми числами. Однако при решении указанных уравнений в зависимости от величины i 21 и z c величины z 1 и z 2 могут быть получены в виде целых или смешанных чисел. Последние округляют до целых чисел. Поэтому получить точно заданное передаточное отношение при использовании однопарной гитары в большинстве случаев затруднительно.

Пример 1 . Определить числа зубьев сменных колес однопарной гитары с z c =72 при i 21 = 1/3.

Из уравнений:

и

получаем:
и
, а

Проверка:

В данном случае числа зубьев z 1 и z 2 получены в виде целых чисел, так как величина z с = 72 делится без остатка на сумму числителя и знаменателя (1+3) требуемого передаточного отношения.

Пример 2 . Определить числа зубьев сменных колес однопарной гитары при z c =72 и i 21 = 0,329.

Из уравнений:
и

получаем:
и
, а

Принимаем: z 1 = 18 и z 2 = 54

Проверка:

Подобранными колесами заданное передаточное отношение воспроизводится приближенно.

Однопарные гитары применяются, когда число необходимых передаточных отношений невелико и когда к точности осуществления заданного передаточного отношения не предъявляется высоких требований. Они используются в приводах главного движения станков-автоматов, полуавтоматов и специальных станков, а также в приводах подачи некоторых станков, например, зубофрезерных.


Короткий путь http://bibt.ru

§ 3. МЕТОДЫ ПОДБОРА СМЕННЫХ КОЛЕС ГИТАР.

Гитарой (рис. 2) называется устройство, обеспечивающее правильное сцепление сменных зубчатых колес.

Рис. 2. Схема двухпарной гитары

Расстояние L между ведущим 1 и ведомым 2 валами является неизменным. На ведомом валу свободно установлен приклон гитары 3, закрепленный болтом 4. Ось 5 промежуточных колес b,с можно перемещать по радиальному пазу, тем самым изменяя расстояние А между центрами колес с и d. Дуговой паз позволяет регулировать размер В. Чтобы подобранные сменные зубчатые колеса не упирались во втулки валов 1, 2, необходимо соблюдать условия их сцепляемости:

a+b>c+(15-:-20); с+d>b+(15-:-20).

При подборе колес необходимо учитывать и допускаемые пределы передаточных отношений пар сменных колес 1/5<= i <= 2,8. Каждой гитаре придается определенный набор сменных колес. Нормальные комплекты сменных зубчатых колес для различных станков приведены в книгах , .

Существует несколько способов подбора чисел зубьев сменных колес.

Способ разложения на сомножители прост и точен. Этот способ применяют тогда, когда числитель и знаменатель передаточного отношения можно разложить на простые множители.

Например:

Проверяем сцепляемость зубчатых колес:

а + b>с+(15-:-20) или 60+70>40+15;

c+d>b+(15-:-20) или 40+80>70+15.

Способ замены часто встречающихся чисел приближенными дробями заключается в том, что часто встречающиеся при нарезании дюймовых резьб, червяков и в других случаях числа π и 25,4 (числовое значение дюйма) заменяют приближенными значениями, удобными для подбора сменных колес, например:

1"" ≈ 25,4 мм =127/5 мм; π≈22/7≈(19*21)/127 и т.д.

Полученная при этом погрешность не должна превышать заданной по условию. Абсолютная погрешность наладки

∆i=i см -i" см;

относительная погрешность наладки

где i см - заданное передаточное отношение; i" см - полученное передаточное отношение сменных колес.

Способ подбора сменных колес на логарифмической линейке наименее точен. Край движка логарифмической линейки устанавливают против числа, соответствующего передаточному отношению гитары сменных колес. Передвижением бегунка находят риски, совпадающие на движке и на линейке. По полученным новым целым числам, которые дают при делении те же значения частного, подбирают числа зубьев сменных зубчатых колес.


У некоторых металлорежущих станков для наладки кинематических цепей применяют устройства, называемые гитарами (см. рисунок 11, г). Они обеспечива­ют необходимое сцепление сменных зубчатых колес. Для осуществления точных передаточных отношений используют двухпарные и трехпарные гитары. Каждая гитара снабжена определенным набором сменных колес.

Нормальные комплекты сменных зубчатых колес приведены, в таблице 4. Что­бы подобранные сменные зубчатые колеса могли поместиться на гитаре и не упи­рались во втулки валиков зубчатых колес, необходимо соблюдать следующие ус­ловия зацепляемости: а+Ь^Н-(15-22); с+ё^э+(15-22).

Суммы чисел сопряженных колес не должны превышать допустимого значе­ния, определяемого конструкцией и размерами места, отведенного для размещения гитары на станке.

Существует несколько способов подбора чисел зубьев сменных зубчатых ко­лес.

Способ разложения на простые множители применяют в том случае, если на них можно разложить числитель и знаменатель передаточного отношения, по­лученного по уравнению наладки.

Произведя разложение, сокращают дробь или вводят дополнительные множи­тели, комбинируя их так, чтобы получить выражение дроби через числа зубьев, имеющихся в комплекте сменных колес.


Способ замены часто встречающихся чисел приближенными дробями за­ключается в том, что часто встречающиеся числа заменяют

приближенными величинами (таблица 7), дающими возможность с достаточной точностью получить передаточные отношения. Этот метод находит применение на токарно-винторезных станках при необходимости нарезания модульной или пит-чиевой резьбы, а также при нарезании дюймовой резьбы в случае отсутствия в на­боре колеса с числом зубьев z=127.

П р и м е р 2. Подобрать сменные зубчатые колеса для нарезания дюймовой резьбы с чис­лом ниток на один дюйм к=10 на токарно-винторезном станке с шагом винта рх, в = 6мм и посто­янным передаточным отношением 1 П ост = 1-

Решаем этот пример пользуясь таблицей 7:

При применении приближенных способов подбора сменных колес, получен­ное передаточное отношение отличается от заданного, поэтому возникает необхо­димость в определении погрешности наладки. Например, в нашем случае

Абсолютная погрешность будет равна 0,42333-0,42307=0,00026


Например, для передаточного отношения

В соответствующей колонке таблиц В.А. Шишкова (см. таблицу 8) находим близкое значение логарифма lg i, которому соответствуют сменные зубчатые коле­са гитары с передаточным отношением

В таблице 6 даны значения передаточных отношений меньше единицы, по­этому для i>l нужно брать логарифм обратной! величины передаточного отноше­ния:


Подбор чисел зубьев колес по логарифмической линейке. Край движка ло­гарифмической линейки устанавливают против числа, соответствующего переда­точному отношению. Передвижением визира находят риски, совпадающие на движке и на линейке. Риски должны соответствовать целым числам, которые дают при делении значение передаточного отношения. Затем подбирают числа зубьев сменных зубчатых колес, например, способом разложения на простые множители:

Оставив движок в полученном положении, передвигаем визир до тех пор, пока риски на движке и на линейке не совпадут. Тогда

Этот способ подбора колес при нарезании резьб применять, как правило нель­зя, так как его точность обычно невысока.

Подбор чисел зубьев по таблицам М.В. Сандакова. Очень часто передаточ­ное отношение содержит дробные числители и знаменатели или множители, не­кратные набору колес. В этом случае удобно подбирать числа зубьев зубчатых ко­лес по таблицам М.В. Сандакова, содержащим 100 000 передаточных отношений. Заданное передаточное отношение в виде простой правильной дроби, неудобное для преобразования, нужно прежде всего обратить в десятичную дробь с шестью знаками после запятой. Если дробь неправильная, то необходимо разделить ее зна­менатель на числитель, чтобы получить десятичную дробь меньше единицы. После этого в таблице находят десятичную дробь, равную полученной или ближайшую к ней, а рядом - соответствующую ей простую дробь. Получив простую дробь, далее

числа зубьев сменных колес подбирают обычным способом, например , от-

Похожие публикации