Как найти замыкание в импульсном трансформаторе. Проверка импульсных трансформаторов и тдкс

Трансформаторы получили широкое применение в радиоэлектронике. Они являются преобразователями переменного напряжения и, в отличие от других радиоэлементов, выходят из строя редко. Для определения их исправности нужно знать, как проверить трансформатор мультиметром. Этот способ достаточно простой, и необходимо понять принцип работы трансформатора и его основные характеристики.

Основные сведения о трансформаторах

Для преобразования номиналов переменного напряжения применяются специальные электрические машины - трансформаторы.

Трансформатор - это электромагнитное устройство, предназначенное для преобразования переменного напряжения и тока одной величины в переменный ток и напряжение другой величины.

Устройство и принцип действия

Используется во всех схемах питания потребителей, а также для осуществления передачи электроэнергии на значительные расстояния. Устройство трансформатора достаточно примитивно:

  1. Ферромагнитный сердечник выполнен из ферромагнетика и называется магнитопроводом. Ферромагнетики - это вещества, обладающие самопроизвольной намагниченностью, параметры (атомы обладают постоянным спиновым или орбитальным магнитными моментами) сильно изменяются благодаря магнитному полю и температуре.
  2. Обмотки: первичная (подключается сетевое напряжение) и вторичная (питание потребителя или группы потребителей). Вторичных обмоток может быть больше 2-х.
  3. Дополнительные составляющие применяются для силовых трансформаторов: охладители, газовое реле, индикаторы температуры, поглотители влаги, трансформаторы тока, системы защиты и непрерывной регенерации масла.

Принцип действия основан на нахождении проводника в переменном электрическом поле. При движении проводника, например, соленоида (катушка с сердечником), на его выводах можно снять напряжение, которое зависит прямо пропорционально от количества витков. В трансформаторе реализован этот подход, но осуществляет движение не проводник, а электрическое поле, образованное переменным током. Он движется по магнитопроводу, выполненному из ферромагнетика. Ферромагнетик - это специальный сплав, идеально подходящий для . Основные материалы для сердечников:

  1. Электротехническая сталь содержит большую массовую долю кремния (Si) и соединяется под действием высокой температуры с углеродом, массовая доля которого не более 1%. Ферромагнитные свойства нечетко выражаются, и происходят потери на вихревые токи (токи Фуко). Потери прямо пропорционально растут с увеличением частоты. Для решения этой проблемы и происходит добавление Si в углеродистую сталь (Э42, Э43, Э320, Э330, Э340, Э350, Э360). Расшифровывается аббревиатура Э42: Э - электротехническая сталь, содержащая 4% — Si с 2% магнитных потерь.
  2. Пермаллой - вид сплава, и его составляющими частями являются никель и железо. Этот вид характеризуется высоким значением магнитной проницаемости. Применяется в маломощных трансформаторах.

При протекании тока по первичной обмотке (I) в ее витках образуется магнитный поток Ф, который распространяется по магнитопроводу на II обмотку, вследствие чего в ней образуется ЭДС (электродвижущая сила). Устройство может работать в 2-х режимах: нагрузки и холостого хода.

Коэффициент трансформации и его расчет

Коэффициент трансформации (k) является очень важной характеристикой. Благодаря ему можно выявить неисправности. Коэффициент трансформации - это величина, показывающая отношение количества витков I обмотки к числу витков II обмотке. По k трансформаторы бывают:

  1. Понижающими (k > 1).
  2. Повышающими (k < 1).

Найти его просто, и для этого необходимо узнать отношение напряжений каждой из обмоток. При наличии более 2-х обмоток расчет производится для каждой из них. Для точного определения k нужно пользоваться 2-мя вольтметрами, так как напряжение сети может изменяться, и эти изменения нужно отслеживать. Подавать нужно только напряжение, указанное в характеристиках. Определяется k несколькими способами:

По паспорту, в котором указаны все параметры устройства (напряжение питания, коэффициент трансформации, сечение провода на обмотках, количество витков, тип магнитопровода, габариты).

  1. Расчетный метод.
  2. При помощи моста Шеринга.
  3. При помощи специальной аппаратуры (например, УИКТ-3).

Рассчитать k несложно, и существует ряд формул, позволяющих сделать это. Нет необходимости учитывать потери магнитопровода, применяемые при изготовлении на заводе. Исследования показали взаимосвязь магнитопровода (железняк) и k. Для улучшения КПД трансформатора нужно уменьшить магнитные потери:

  1. Использование специальных сплавов для магнитопровода (уменьшение толщины и спецобработка).
  2. Уменьшение количества витков при использовании толстого провода, а на высоких частотах большое сечение является пространством для создания вихревых токов.

Для этих целей применяют аморфную сталь. Но и она обладает ограничением, называемым магнитострикцией (изменение геометрических размеров материала под действием электромагнитного поля). При использовании этой технологии удается получать листы для железняка толщиной в сотые доли миллиметров.

Расчетные формулы

При отсутствии соответствующей документации нужно производить расчеты самостоятельно. В каждом конкретном случае способы расчета различны. Основные формулы расчета k:

  1. Без учета возможных погрешностей: k = U1 / U2 = n1 / n2, где U1 и U2 - U на I и II обмотках, n1 и n2 - количество витков на I и II обмотках.
  2. При учете погрешностей: k = U1 / U2 = (e *n1 + I1 * R1) / (e * n2 + I2 * R2), где U1 и U2 - напряжения на I и II обмотках; n1 и n2 - кол-во витков на I и II обмотках; е - ЭДС (электродвижущая сила) в каждом из витков обмоток; I1 и I2 - силы токов I и II обмоток; R1 и R2 - сопротивления для I и II.
  3. По известным мощностям при параллельном подключении обмоток: kz = Z1 / Z2 = ku * ku, где kz - k по мощности, Z1 и Z2 - мощности на первичной и вторичной обмотках, ku - k по напряжению (k = U1 / U2).
  4. По токам при последовательном подключении обмоток: k = I1 / I2 = n2 / n1. При учете результирующего тока холостого хода (ток потерь Io): I1 * n1 = I2 * n2 + Io.

Проверка исправности

В основном трансформаторы применяются в блоках питания. Намотка и изготовление самого трансформатора с нуля - сложная задача и под силу не каждому. Поэтому за основу берется уже готовый и модернизируется путем изменения количества витков вторичной обмотки. Основные неисправности трансформатора:

  1. Обрыв выводов.
  2. Повреждение магнитопровода.
  3. Нарушение изоляции.
  4. Сгорание при КЗ.

Диагностика начинается с визуального осмотра. Первоначальная диагностика включает в себя осмотр выводов трансформатора, его катушек на предмет обугливаний, целостность магнитопровода.

При изношенных выводах необходимо зачистить их, а в некоторых случаях при обрыве - разобрать трансформатор, припаять их и прозвонить тестером.

При поврежденном магнитопроводе нужно его заменить или узнать из справочников об аналогичном для конкретной модели, так как он ремонту не подлежит. Можно заменить отдельные пластины.

При КЗ необходимо провести диагностику на работоспособность при помощи измерительных приборов (проверка трансформатора мультиметром).

При пробитой изоляции происходит контакт между витками обмоток или на корпус. Определить эту неисправность достаточно сложно. Для этого необходимо произвести следующие действия:

  1. Включить прибор в режим измерения сопротивления.
  2. Один щуп должен быть на корпусе, а другой нужно присоединить к каждому выводу трансформатора поочередно.
  3. Прибор должен во всех случаях прозвонок показывать бесконечность, что свидетельствует об отсутствии КЗ на корпус.
  4. При любых показаниях прибора пробой на корпус существует, и нужно полностью разбирать трансформатор и даже разматывать его обмотки для выяснения причины.

Для поиска короткозамкнутых витков нужно определить, где I обмотка (вход), а где II (выход) у неизвестного трансформатора. Для этого стоит воспользоваться следующим алгоритмом:

  1. Выяснить сопротивление первичной обмотки трансформатора 220 вольт при помощи измерений мультиметра в режиме «сопротивления». Необходимо записать показания прибора. Выбрать обмотку с наибольшим сопротивлением.
  2. Взять лампочку на 50 Вт и подключить ее последовательно с этой обмоткой.
  3. Включить в сеть на 5−7 секунд.

После этого отключить и проверить обмотки на нагрев. Если заметного превышения температуры нет, то приступить к поиску короткозамкнутых витков. Как проверить трансформатор на межвитковое замыкание: необходимо воспользоваться мегаомметром при напряжении 1000 В. При измерении пробоя изоляции необходимо прозванивать корпус и выводы обмоток, а также независимые между собой обмотки, например, вывод I и II.

Нужно определить коэффициент трансформации и сравнить его с документом. Если они совпадают - трансформатор исправен.

Существуют еще два метода проверки:

  1. Прямой - подразумевает проверку под нагрузкой. Для его осуществления необходимо собрать цепь питания I и II обмоток. Путем измерения значений тока в обмотках, а затем по формулам (4) определить k и сравнить его с паспортными данными.
  2. Косвенные методы. Включают в себя: проверку полярности выводов обмоток, определение характеристик намагничивания (используется редко). Полярность находится при помощи вольтметра или амперметра магнитоэлектрического исполнения с определением полярности на выходе. При отклонении стрелки вправо - полярности совпадают.

Проверка импульсного трансформатора достаточна сложная, и ее может произвести только опытный радиолюбитель. Существует много способов проверки исправности импульсников.

Таким образом, трансформатор можно легко проверить мультиметром, зная основные особенности и алгоритм проверки. Для этого нужно выяснить тип трансформатора, найти документацию по нему и рассчитать коэффициент трансформации. Кроме того, необходимо произвести визуальный осмотр прибора.

Данная статья отвечает на вопросы: как проверить импульсный трансформатор и как проверить ТДКС .
Метод №1

Для проверки работоспособности трансформатора понадобится осциллограф и звуковой генератор с диапазоном частоты от 20 кГц до 100 кГц. Через конденсатор с емкостью 0,1-1 мкФ подается синусоидальный импульс с амплитудой 5-10 В на первичную обмотку проверяемого преобразователя. Сигнал вторичной обмотки измеряется подключенным к ней осциллографом. Если синусоидальный сигнал не искажен, на любом из участков частотного диапазона, то проверяемый трансформатор исправен. Искаженная синусоида свидетельствует о неисправности преобразователя. На рисунке 1 схематически показан способ подключения. На рисунке 2 – форма синусоидальных сигналов.

Рис. 1. Схема подключения тестируемого трансформатора (метод №1)
Рис. 2. Формы синусоидальных сигналов (метод №1)
Метод №2

Чтобы проверить исправность импульсного трансформатора данным методом, для начала необходимо параллельно подключить конденсатор емкостью 0,01-1 мкФ к первичной обмотке и с помощью генератора звуковых частот подать на обмотку сигнал с амплитудой 5-10 В. Далее, изменяя частоту сигнала генератора нужно создать резонанс в параллельно подключенном колебательном контуре и, с помощью осциллографа, контролировать амплитуду импульса. Если в работоспособном преобразователе замкнуть вторичную обмотку, то колебания в контуре прекратятся. Из чего можно сделать вывод, что из-за короткого замыкания в витках нарушается резонанс в колебательном контуре. Поэтому, если в тестируемом трансформаторе имеются короткозамкнутые витки, не зависимо от частоты сигнала, резонанс будет отсутствовать. Схема подсоединения всех элементов изображена на рисунке 3

Рис. 3. Схема подключения тестируемого трансформатора (метод №2)
Метод №3
Данный метод проверки трансформатора такой же, как и предыдущий, но с небольшим отличием: подключение конденсатора не параллельное, а последовательное. Если в обмотке трансформатора присутствуют короткозамкнутые витки, при резонансной частоте происходит обрыв колебаний в контуре и в дальнейшем вызвать резонанс будет невозможно.
Способ подключения схематически показан на рисунке 4.
Рис. 4. Схема подключения тестируемого трансформатора (метод №3)
Метод №4
Три предыдущих метода лучше подходят для тестирования разделительного трансформатора и трансформатора питания, а проверить работоспособность преобразователя ТДКС с помощью этих способов можно лишь приблизительно. Оценить пригодность строчного трансформатора можно следующим образом.

По коллекторной обмотке проверяемого преобразователя нужно пустить прямоугольный частотный импульс 1-10кГц с небольшой амплитудой (подойдет выходной сигнал для калибровки осциллографа). В то же место требуется подключить вход осциллографа и, исходя из полученного изображения, можно делать выводы. Если ТДСК исправен, то амплитуда наблюдаемых продифференцированных сигналов будет примерно такой же, как и исходные прямоугольные импульсы. При наличии в трансформаторе короткозамкнутых витков, на картинке будут видны короткие продифференцированные сигналы с амплитудой ниже в несколько раз, чем у исходного прямоугольного импульса.

Такой метод проверки считается рациональным, так как для тестирования ТДКС необходим всего лишь один измерительный прибор. Но стоит также учитывать, что не все осциллографы оснащены выходом генератора, который используется для калибровки прибора. К примеру, довольно распространенные осциллографы С1-94 и С1-112 не оборудованы отдельным генератором калибровки. Чтобы решить данную проблему, можно самостоятельно собрать простой генератор, который сможет поместиться на одной микросхеме. К тому же его не сложно установить в корпус осциллографа, что обеспечит быструю и эффективную проверку ТДКС трансформаторов. Схема сборки генератора изображена на рисунке 5.

Рис. 5. Схема генератора (метод №4)
Собранный генератор устанавливается внутри осциллографа в любом подходящем месте, питание подводится от 12 В шины. В качестве включателя удобней использовать тумблер сдвоенного типа (П2Т1-1В), который лучше разместить на передней части устройства, рядом с входным разъемом осциллографа.
Питание на генератор подается через одну пару контактов, через другую пару контактов соединяется вход самого осциллографа с выходом генератора. Благодаря чему, чтобы проверить исправность трансформатора, достаточно соединить обмотку преобразователя и вход осциллографа простым сигнальным проводом.
Метод №5

В этом методе описывается проверка ТДКС на межвитковые короткие замыкания и обрывы в обмотках без использования генератора. Перед началом тестирования преобразователя нужно отсоединить его вывод от источника электропитания (110-160 В). Далее, с помощью специальной перемычки необходимо замкнуть коллектор выходного транзистора строчной развертки с общим проводом. После чего узел электропитания по цепи 110-160 В нужно нагрузить электролампой в 40-60 Вт, 220 В. Теперь следует найти на вторичных обмотках преобразователя узла электропитания напряжение в 10-30 В и пропустить его через транзистор, с сопротивлением10 Ом, на отсоединенный вывод ТДКС. Сигнал резистора контролируется осциллографом. Если проверяемый трансформатор имеет межвитковые замыкания, то изображения будет выглядеть как «грязно-пушистый прямоугольник», и основная часть напряжения упадет на резисторе. Если замыкания отсутствуют, то рисунок прямоугольника будет чистым, а падение электросигнала на резисторе составит не более чем несколько долей Вольт.

Контролируя сигналы на вторичных обмотках, можно узнать, исправен трансформатор или нет. Если на картинке изображен прямоугольник, значит обмотка целая, если прямоугольника нет – обмотка оборвана. Далее нужно убрать резистор сопротивления (10 Ом) и повесить на все вторичные обмотки ТДКС нагрузку 0,2-1,0 кОм. Если на выходе изображения такое же, как и на входе, то ТДКС трансформатор исправен.

Тестер трансформаторов - это незаменимый прибор при ремонте телевизоров, мониторов и других подобных устройств. С большой точностью он может указать на КЗ в витках. У меня работает с 2003 года, на работу нареканий нет. Прибор запускается сразу и налаживания не требует. Подключил, кнопку нажал, посмотрел - если будет замыкание в витках - покажет. Не подводил еще ни разу, таким тестером намного лучше, чем генератором да осциллографом, наличия короткого вычислять. Собирал по оригинальной схеме, только мастеркитовскую печатку немного переделал, сжал и поместил на нее батарейки питания. Дальше схема электрическая и описание от автора, опубликованное в журнале "Ремонт электронной техники ":

Данный несложный прибор позволяет без выпаивания трансформатора из схемы диагностировать дефекты и существенно сократить время ремонта. Известно, что частая причина отказов телевизоров и мониторов - это выход из строя силовых элементов блоков питания и строчной развертки. Это легко объяснимо, ведь они работают в очень тяжелых условиях, при высоких токах и напряжениях. Нередко выход из строя одного элемента, например строчного трансформатора, провоцирует выход из строя других связанных с ним элементов, таких как выходной транзистор или демпферные диоды. Иногда трудно сразу обнаружить все поврежденные элементы и определить причину их отказа, а при неправильно определенной причине замененные элементы могут через короткое время снова выйти из строя, увеличивая затраты на ремонт и, что еще хуже, роняя репутацию мастера в глазах клиентов.

Наиболее трудными для диагностики являются импульсные трансформаторы блоков питания, строчные трансформаторы и отклоняющие катушки ЭЛТ. Наиболее частый вид их отказа - появление короткозамкнутых витков, и он никак не диагностируется при помощи тестера. Проверка методом замены на заведомо исправный элемент также не всегда возможна, ведь такие трансформаторы обычно делаются под конкретную модель телевизора и являются весьма дорогостоящими элементами.

Существенно облегчить диагностику любых трансформаторов и дросселей на ферритовых сердечниках помогает предлагаемый тестер импульсных трансформаторов. Идея работы прибора основана на том факте, что все подобные трансформаторы работают на принципе накопления энергии и поэтому должны иметь высокую добротность, а наличие короткозамкнутых витков резко ее снижает. Задача состоит в том, как ее оценить простыми средствами.

Можно возбудить в контуре ударные колебания и подсчитать число периодов, за которое амплитуда упадет до определенного уровня. Известно, что это число пропорционально добротности контура. На этом принципе и построен прибор.

Тестер состоит из трех частей: генератора импульсов ударного возбуждения, компаратора импульсов “звона” и счетчика импульсов. Генератор импульсов собран на компараторе DA1.2 (LM393), транзисторах VT1, VT2 и диоде VD2. Он вырабатывает короткие импульсы ударного возбуждения длительностью около 2 мс и частотой около 10 Гц. Диод VD2 устанавливает амплитуду импульсов возбуждения равной примерно 0,7 В, что позволяет проводить проверку трансформаторов без их выпаивания из схемы, так как при таком напряжении имеющиеся в схеме p-n-переходы оказываются закрытыми и не влияют на результат измерения.

Проверяемый трансформатор подключается к выводам 3 и 4 тестера и совместно с конденсатором СЗ создает колебательный контур. По спаду импульса возбуждения открывается транзистор VT2 и начинаются свободные затухающие колебания в образованном колебательном контуре. Эти колебания через переходной конденсатор С4 поступают на вход компаратора импульсов, собранного на DA1.1. На этот же вход поступает напряжение порога срабатывания, которое формируется делителем R11, R12 и опорным источником VD3. Порог выбран на уровне 10% от напряжения возбуждения.

В качестве опорного источника порога использован диод того же типа, что и в источнике ударного возбуждения, что гарантирует стабильность параметров тестера в достаточно широком диапазоне температур и питающих напряжений. С выхода компаратора импульсы поступают на вход счетчика импульсов, собранного на микросхеме DA2. Эта микросхема представляет собой два четырехразрядных сдвиговых регистра с последовательными входами.

В схеме тестера эти регистры соединены последовательно в один восьмиразрядный регистр, и информационный вход первого регистра подключен к лог. “1”. На тактовые входы микросхемы (выводы 1, 9) подаются импульсы с компаратора. Ко всем выходам регистра через токоограничивающие резисторы R15...R22 подключены светодиоды. Во время формирования импульса возбуждения регистры обнуляются по входам Reset (выводы 6 и 14) и все светодиоды гаснут. По спаду импульса возбуждения начинается колебательный процесс в контуре подключенного трансформатора. Возникшие колебания преобразуются компаратором в логические импульсы, которые далее поступают на сдвиговый регистр.

В сдвиговом регистре каждый импульс переносит лог. “1” на очередной разряд, зажигая последовательно светодиоды HL1...HL8. Для удобства пользования первые три светодиода красные (трансформатор неисправен), следующие два - желтые (ситуация неопределенная) и последние три - зеленые (трансформатор исправен). После окончания колебательного процесса число светящихся светодиодов равно числу периодов колебания. Если число импульсов более 8, то светятся все светодиоды.

Работа с прибором при проведении ремонта. Сначала нужно, не отпаивая никаких компонентов, подключить прибор выводом GND к шасси телевизора, а выводом НОТ к коллектору выходного транзистора строчной развертки. Если при нажатии на кнопку “Тест” загорится более четырех светодиодов, это говорит об исправности выходных цепей строчной развертки. Если светится менее двух светодиодов, то это говорит о наличии коротких замыканий на выходе цепей - необходимо выпаять выходной транзистор и повторить измерение.

Если после этого светится более четырех светодиодов, то требуется замена выходного транзистора, в противном случае нужно выпаять демпфирующий диод и повторить измерение. Свечение более четырех светодиодов свидетельствует о необходимости замены этого диода. Такие же операции необходимо повторить с конденсатором обратного хода и отклоняющими катушками ЭЛТ. Если результат отрицательный, то необходимо выпаять строчный трансформатор и провести его тестирование вне схемы. Свечение менее двух светодиодов при проверке выпаянного трансформатора говорит о наличии короткозамкнутых витков в трансформаторе и необходимости его замены.

Порядок проверки импульсных блоков питания и отклоняющих катушек ЭЛТ аналогичен. Следует только отметить, что при проверке может потребоваться временно отключить шунтирующие цепи, которые устанавливаются параллельно обмоткам.

Аналог микросхемы 4015 - К561ИР2, она совсем не дефицит, в магазинах без проблем можно будет купить. правда для более мощных обмоток (генератор авто, электродвигатели) он не годится, на ферритовых сердечниках покажет любое КЗ, а на трансформаторной стали - нет. Транзистор поставил 2N5401, а на месте полевого - 2N7000, подбирать ничего не надо. Прибор запускается сразу. Автор схемы В. Чулков , сборка nickolay78 .

Обсудить статью ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

В этом видеоролике канала Паяльник ТВ мы рассмотрим простейшие способы, как проверить обмотки и способ получения из обычного трансформатора. Самый лучший вариант – это наличие двух одинаковых обмоток. В данном случае у каждой амплитудное напряжение по 12 вольт, а сопротивление их по 100 миллиОм.

Здесь очень важно сделать правильное соединение. Друг с другом обмотки соединяются теми концами, фазы которых противоположны, то есть сдвинуты на 180 градусов. И тогда на двух других концах получается сумма напряжений обеих обмоток. Эти концы подключаются к входам обычного диодного моста, а выходы моста подключаются к 2 сглаживающим конденсаторам, которые соединены так, чтобы один из них через верхние диоды заряжался положительным напряжением с концов обмоток относительно земли, а другой отрицательным через нижние диоды. А земля, которая здесь является средней точкой, подключена к другим контактам. В качестве нагрузки здесь используются два резистора. Отдельно на плюс и на минус питания.

Теперь посмотрим на эту схему в действии.

Особое наблюдение установим за положительным и отрицательным напряжениями на выходе. Без нагрузки показатели очень быстро достигли уровня плюс и минус 12 вольт и отсутствуют пульсации. А после подключения нагрузки появились пульсации и напряжение немного просело.

Давайте теперь нагрузим и минус двухполярного питания и понаблюдаем, как будет влиять на пульсации изменения сопротивления нагрузки. Итак, последнее уменьшено в несколько раз и пульсации от этого существенно выросли. Теперь уменьшим потребляемый ток, вернув прежнее сопротивление, и посмотрим на пульсации на плюсе питания поближе.

Получается амплитуда пульсации примерно 700 милливольт. Этот результат мы запомним для сравнения с другими вариантами. А теперь пришло время применить эту схему к реальному трансформатору.

Допустим, имеется трансформатор без опознавательных знаков. Нужно проверить его работоспособность, сколько здесь обмоток и на какое напряжение. Самый простой способ это сделать – включить в сеть 220 или 110 вольт в зависимости от входного напряжения, на которое он рассчитан. И измерить его на вторичных обмотках. Так как есть риск закоротить их при измерении, будем использовать то. что попадается нам под руку. В нашем случае это термоусадка. Сначала наденем ее на выводы вторичных обмоток. Поставим режим измерения в данном случае до двухсот вольт. Следующим моментом его надо включить. Но так как это заведомо рабочий трансформатор, включим не через лампочку. Если же это неизвестный трансформаторах и мы не знаем его работоспособность, лучше всего включить через лампочку, то есть в разрыв одного из проводов подключаем её.

Теперь давайте измерять попарно. Чаще всего в трансформаторах именно попарные обмотки, которые выведены рядом.

Здесь примерно 9 вольт. Мы определили одну из обмоток. Это первые два – 9 вольт. Измеряем вторые два. Тоже 9 вольт.

То есть мы нашли вторую обмотку. Третья и четвертая пары тоже по 9 вольт. Остается проверить, что они не соединены.

Как проверить трансформатор мультиметром? Инструкция

fb.ru

Часто нужно ознакомиться заранее с вопросом о том, как проверить трансформатор. Ведь при выходе его из строя или нестабильной работе будет сложно искать причину отказа оборудования. Это простое электротехническое устройство можно продиагностировать обычным мультиметром. Рассмотрим, как это сделать.

Как проверить трансформатор, если не знаем его конструкцию? Рассмотрим принцип действия и разновидности простого оборудования. На магнитный сердечник наносят витки медной проволоки определенного сечения так, чтобы оставались выводы для подающей обмотки и вторичной.

Передача энергии во вторичную обмотку производится бесконтактным способом. Тут уже становится почти ясно, как проверить трансформатор. Аналогично прозванивается обычная индуктивность омметром. Витки образуют сопротивление, которое можно измерить. Однако такой способ применим, когда известна заданная величина. Ведь сопротивление может измениться в большую или меньшую сторону в результате нагрева. Это называется межвитковое замыкание.

Такое устройство уже не будет выдавать эталонное напряжение и ток. Омметр покажет только обрыв в цепи или полное короткое замыкание. Для дополнительной диагностики используют проверку замыкания на корпус тем же омметром. Как проверить трансформатор, не зная выводов обмоток?

Это определяется по толщине выходящих проводов. Если трансформатор понижающий, то выводные проводники будут толще подводящих. И соответственно, наоборот: у повышающего вводные провода толще. Если две обмотки выходные, то толщина может быть одинаковой, про это следует помнить. Самый верный способ посмотреть маркировку и найти технические характеристики оборудования.

Виды

Трансформаторы делятся на следующие группы:

  • Понижающие и повышающие.
  • Силовые чаще служат для уменьшения подводящего напряжения.
  • Трансформаторы тока для подачи потребителю постоянной величины тока и ее удержания в заданном диапазоне.
  • Одно- и многофазные.
  • Сварочного назначения.
  • Импульсные.

В зависимости от назначения оборудования изменяется и принцип подхода к вопросу о том, как проверить обмотки трансформатора. Мультиметром можно прозвонить лишь малогабаритные устройства. Силовые машины уже требуют иного подхода к диагностике неисправностей.

Метод прозвонки

Метод диагностики омметром поможет с вопросом о том, как проверить трансформатор питания. Прозванивать начинают сопротивление между выводами одной обмотки. Так устанавливают целостность проводника. Перед этим проводят осмотр корпуса на отсутствие нагаров, наплывов в результате нагрева оборудования.

Далее замеряют текущие значения в Омах и сравнивают их с паспортными. Если таковых не имеется, то потребуется дополнительная диагностика под напряжением. Прозвонить рекомендуется каждый вывод относительно металлического корпуса устройства, куда подключаются заземление.

Перед проведением замеров следует отключить все концы трансформатора. Отсоединить от цепи их рекомендуется и в целях собственной безопасности. Также проверяют наличие электронной схемы, которая часто присутствует в современных моделях питания. Её также следует выпаять перед проверкой.

Бесконечное сопротивление говорит о целой изоляции. Значения в несколько килоом уже вызывают подозрения о пробое на корпус. Также это может быть за счет скопившейся грязи, пыли или влаги в воздушных зазорах устройства.

Под напряжением

Испытания с поданным питанием проводятся, когда стоит вопрос о том, как проверить трансформатор на межвитковое замыкание. Если мы знаем величину питающего напряжения устройства, для которого предназначен трансформатор, то замеряют вольтметром значение холостого хода. То есть провода выводные находятся в воздухе.

Если значение напряжения отличается от номинального, то делают выводы о межвитковом замыкании в обмотках. Если при работе устройства слышны треск, искрение, то такой трансформатор лучше сразу выключить. Он неисправен. Существуют допустимые отклонения при измерениях:

  • Для напряжения значения могут отличаться на 20%.
  • Для сопротивления нормой является разброс значений в 50% от паспортных.

Замер амперметром

Разберемся, как проверить трансформатор тока. Его включают в цепь: штатную либо собственно изготовленную. Важно, чтобы значение тока было не меньше номинального. Замеры амперметром проводят в первичной цепи и во вторичной.

Ток в первичной цепи сравнивают со вторичными показаниями. Точнее, делят первые значения на замеренные во вторичной обмотке. Коэффициент трансформации следует взять из справочника и сравнить с полученными расчетами. Результаты должны быть одинаковыми.

Трансформатор тока нельзя замерять на холостом ходу. На вторичной обмотке в таком случае может образоваться слишком высокое напряжение, способное повредить изоляцию. Также следует соблюдать полярность подключения, что повлияет на работу всей подключенной схемы.

Типичные неисправности

Перед тем как проверить трансформатор микроволновки, приведем частые разновидности поломок, устраняемых без мультиметра. Часто устройства питания выходят из строя вследствие короткого замыкания. Оно устанавливается путем осмотра монтажных плат, разъемов, соединений. Реже происходит механическое повреждение корпуса трансформатора и его сердечника.

Механический износ соединений выводов трансформатора происходит на движущихся машинах. Большие питающие обмотки требуют постоянного охлаждения. При его отсутствии возможен перегрев и оплавление изоляции.

ТДКС

Разберемся, как проверить импульсный трансформатор. Омметром можно будет установить только целостность обмоток. Работоспособность устройства устанавливается при подключении в схему, где участвует конденсатор, нагрузка и звуковой генератор.

На первичную обмотку пускают импульсный сигнал в диапазоне от 20 до 100 кГц. На вторичной же обмотке делают замеры величины осциллографом. Устанавливают присутствие искажений импульса. Если они отсутствуют, делают выводы об исправном устройстве.

Искажения осциллограммы говорят о подпорченных обмотках. Ремонтировать такие устройства не рекомендуется самостоятельно. Их настраивают в лабораторных условиях. Существуют и другие схемы проверки импульсных трансформаторов, где исследуют присутствие резонанса на обмотках. Его отсутствие свидетельствует о неисправном устройстве.

Также можно сравнивать форму импульсов, поданных на первичную обмотку и вышедших со вторичной. Отклонение по форме также говорит о неисправности трансформатора.

Несколько обмоток

Для замеров сопротивления освобождают концы от электрических соединений. Выбирают любой вывод и замеряют все сопротивления относительно остальных. Рекомендуется записывать значения и маркировать проверенные концы.

Так мы сможем определить тип соединения обмоток: со средними выводами, без них, с общей точкой подключения. Чаще встречаются с отдельным подключением обмоток. Замер получится сделать только с одним из всех проводов.

Если имеется общая точка, то сопротивление замерим между всеми имеющимися проводниками. Две обмотки со средним выводом будут иметь значения только между тремя проводами. Несколько выводов встречается в трансформаторах, рассчитанных на работу в нескольких сетях номиналом 110 или 220 Вольт.

Нюансы диагностики

Гул при работе трансформатора является нормальным, если это специфичные устройства. Только искрение и треск свидетельствуют о неисправности. Часто и нагрев обмоток – это нормальная работа трансформатора. Чаще это наблюдается у понижающих устройств.

Может создаваться резонанс, когда вибрирует корпус трансформатора. Тогда следует его просто закрепить изоляционным материалом. Работа обмоток значительно меняется при неплотно затянутых или загрязненных контактах. Большинство проблем решается зачисткой металла до блеска и новой обтяжкой выводов.

При замерах значений напряжения и тока следует учитывать температуру окружающей среды, величину и характер нагрузки. Контроль подводящего напряжения также необходим. Проверка подключения частоты обязательна. Азиатская и американская техника рассчитана на 60 Гц, что приводит к заниженным выходным значениям.

Неумелое подключение трансформатора может привести к неисправности устройства. Ни в коем случае не подсоединяют к обмоткам постоянное напряжение. Витки быстро оплавятся в противном случае. Аккуратность в замерах и грамотное подключение помогут не только найти причину поломки, но и, возможно, устранить ее безболезненным способом.

Часто нужно ознакомиться заранее с вопросом о том, как проверить трансформатор. Ведь при выходе его из строя или нестабильной работе будет сложно искать причину отказа оборудования. Это простое электротехническое устройство можно продиагностировать обычным мультиметром. Рассмотрим, как это сделать.

Что собой представляет оборудование?

Как проверить трансформатор, если не знаем его конструкцию? Рассмотрим принцип действия и разновидности простого оборудования. На магнитный сердечник наносят витки медной проволоки определенного сечения так, чтобы оставались выводы для подающей обмотки и вторичной.

Передача энергии во вторичную обмотку производится бесконтактным способом. Тут уже становится почти ясно, как проверить трансформатор. Аналогично прозванивается обычная индуктивность омметром. Витки образуют сопротивление, которое можно измерить. Однако такой способ применим, когда известна заданная величина. Ведь сопротивление может измениться в большую или меньшую сторону в результате нагрева. Это называется межвитковое замыкание.

Такое устройство уже не будет выдавать эталонное напряжение и ток. Омметр покажет только обрыв в цепи или полное короткое замыкание. Для дополнительной диагностики используют проверку замыкания на корпус тем же омметром. Как проверить трансформатор, не зная выводов обмоток?

Это определяется по толщине выходящих проводов. Если трансформатор понижающий, то выводные проводники будут толще подводящих. И соответственно, наоборот: у повышающего вводные провода толще. Если две обмотки выходные, то толщина может быть одинаковой, про это следует помнить. Самый верный способ посмотреть маркировку и найти технические характеристики оборудования.

Виды

Трансформаторы делятся на следующие группы:

  • Понижающие и повышающие.
  • Силовые чаще служат для уменьшения подводящего напряжения.
  • Трансформаторы тока для подачи потребителю постоянной величины тока и ее удержания в заданном диапазоне.
  • Одно- и многофазные.
  • Сварочного назначения.
  • Импульсные.

В зависимости от назначения оборудования изменяется и принцип подхода к вопросу о том, как проверить обмотки трансформатора. Мультиметром можно прозвонить лишь малогабаритные устройства. Силовые машины уже требуют иного подхода к диагностике неисправностей.

Метод прозвонки

Метод диагностики омметром поможет с вопросом о том, как проверить трансформатор питания. Прозванивать начинают сопротивление между выводами одной обмотки. Так устанавливают целостность проводника. Перед этим проводят осмотр корпуса на отсутствие нагаров, наплывов в результате нагрева оборудования.

Далее замеряют текущие значения в Омах и сравнивают их с паспортными. Если таковых не имеется, то потребуется дополнительная диагностика под напряжением. Прозвонить рекомендуется каждый вывод относительно металлического корпуса устройства, куда подключаются заземление.

Перед проведением замеров следует отключить все концы трансформатора. Отсоединить от цепи их рекомендуется и в целях собственной безопасности. Также проверяют наличие электронной схемы, которая часто присутствует в современных моделях питания. Её также следует выпаять перед проверкой.

Бесконечное сопротивление говорит о целой изоляции. Значения в несколько килоом уже вызывают подозрения о пробое на корпус. Также это может быть за счет скопившейся грязи, пыли или влаги в воздушных зазорах устройства.

Под напряжением

Испытания с поданным питанием проводятся, когда стоит вопрос о том, как проверить трансформатор на Если мы знаем величину питающего напряжения устройства, для которого предназначен трансформатор, то замеряют вольтметром значение холостого хода. То есть провода выводные находятся в воздухе.

Если значение напряжения отличается от номинального, то делают выводы о межвитковом замыкании в обмотках. Если при работе устройства слышны треск, искрение, то такой трансформатор лучше сразу выключить. Он неисправен. Существуют допустимые отклонения при измерениях:

  • Для напряжения значения могут отличаться на 20%.
  • Для сопротивления нормой является разброс значений в 50% от паспортных.

Замер амперметром

Разберемся, как проверить трансформатор тока. Его включают в цепь: штатную либо собственно изготовленную. Важно, чтобы значение тока было не меньше номинального. Замеры амперметром проводят в первичной цепи и во вторичной.

Ток в первичной цепи сравнивают со вторичными показаниями. Точнее, делят первые значения на замеренные во вторичной обмотке. Коэффициент трансформации следует взять из справочника и сравнить с полученными расчетами. Результаты должны быть одинаковыми.

Трансформатор тока нельзя замерять на холостом ходу. На вторичной обмотке в таком случае может образоваться слишком способное повредить изоляцию. Также следует соблюдать полярность подключения, что повлияет на работу всей подключенной схемы.

Типичные неисправности

Перед тем как проверить трансформатор микроволновки, приведем частые разновидности поломок, устраняемых без мультиметра. Часто устройства питания выходят из строя вследствие короткого замыкания. Оно устанавливается путем осмотра монтажных плат, разъемов, соединений. Реже происходит механическое повреждение корпуса трансформатора и его сердечника.

Механический износ соединений выводов трансформатора происходит на движущихся машинах. Большие питающие обмотки требуют постоянного охлаждения. При его отсутствии возможен перегрев и оплавление изоляции.

ТДКС

Разберемся, как проверить импульсный трансформатор. Омметром можно будет установить только целостность обмоток. Работоспособность устройства устанавливается при подключении в схему, где участвует конденсатор, нагрузка и звуковой генератор.

На первичную обмотку пускают импульсный сигнал в диапазоне от 20 до 100 кГц. На вторичной же обмотке делают замеры величины осциллографом. Устанавливают присутствие искажений импульса. Если они отсутствуют, делают выводы об исправном устройстве.

Искажения осциллограммы говорят о подпорченных обмотках. Ремонтировать такие устройства не рекомендуется самостоятельно. Их настраивают в лабораторных условиях. Существуют и другие схемы проверки импульсных трансформаторов, где исследуют присутствие резонанса на обмотках. Его отсутствие свидетельствует о неисправном устройстве.

Также можно сравнивать форму импульсов, поданных на первичную обмотку и вышедших со вторичной. Отклонение по форме также говорит о неисправности трансформатора.

Несколько обмоток

Для замеров сопротивления освобождают концы от электрических соединений. Выбирают любой вывод и замеряют все сопротивления относительно остальных. Рекомендуется записывать значения и маркировать проверенные концы.

Так мы сможем определить тип соединения обмоток: со средними выводами, без них, с общей точкой подключения. Чаще встречаются с отдельным подключением обмоток. Замер получится сделать только с одним из всех проводов.

Если имеется общая точка, то сопротивление замерим между всеми имеющимися проводниками. Две обмотки со средним выводом будут иметь значения только между тремя проводами. Несколько выводов встречается в трансформаторах, рассчитанных на работу в нескольких сетях номиналом 110 или 220 Вольт.

Нюансы диагностики

Гул при работе трансформатора является нормальным, если это специфичные устройства. Только искрение и треск свидетельствуют о неисправности. Часто и нагрев обмоток - это нормальная работа трансформатора. Чаще это наблюдается у понижающих устройств.

Может создаваться резонанс, когда вибрирует корпус трансформатора. Тогда следует его просто закрепить изоляционным материалом. Работа обмоток значительно меняется при неплотно затянутых или загрязненных контактах. Большинство проблем решается зачисткой металла до блеска и новой обтяжкой выводов.

При замерах значений напряжения и тока следует учитывать температуру окружающей среды, величину и характер нагрузки. Контроль подводящего напряжения также необходим. Проверка подключения частоты обязательна. Азиатская и американская техника рассчитана на 60 Гц, что приводит к заниженным выходным значениям.

Неумелое подключение трансформатора может привести к неисправности устройства. Ни в коем случае не подсоединяют к обмоткам постоянное напряжение. Витки быстро оплавятся в противном случае. Аккуратность в замерах и грамотное подключение помогут не только найти причину поломки, но и, возможно, устранить ее безболезненным способом.

Похожие публикации