Измеритель внутреннего сопротивления аккумулятора. Измеряем внутреннее сопротивление аккумулятора Измерение внутреннего сопротивления li ion

Существенная характеристика для АКБ - внутреннее сопротивление - обозначается буквой «R». Она на многое влияет, а ее измерение - один из основных этапов диагностики аккумулятора. Этот параметр подразделяется на несколько видов. Пожалуй, самый значимый - внутреннее сопротивление аккумулятора. Полезно понимать, что оно означает и как измеряется.

Описание параметра

Для начала, стоит сказать, что есть полное сопротивление АКБ. Это сумма омического R и R поляризации. В то же время, омическое - сумма сопротивлений электролита, соединений между элементами АКБ, отрицательного и положительного выводов, электродов, сепараторов.

Внутреннее сопротивление батареи - такое R, которое оказывается аккумуляторной батареей току, протекающему внутри нее. При этом неважно, зарядный это ток или разрядный. Однако оно будет различаться в разных элементах АКБ. Собственный показатель будет у элементов:

  • решеток электродов;
  • электролита;
  • сепараторов.

На показатель в этих элементах влияет несколько факторов, из-за которых он может сильно различаться у разных аккумуляторов. Вот почему померить сопротивление батарейки не будет лишним.

Связанные факторы

Между показателями губчатого свинца и решетки минусового электрода разницы практически нет. Однако сопротивление перекиси свинца в 10 000 раз больше, чем таковое у решетки плюсового электрода, на которую он нанесен.

Сами электроды устройства могут быть выполнены по-разному, что обуславливает разницу в показателях. Различаться могут, в том числе:

  • качество электрического контакта обмазки и решеток;
  • конструкция электрода;
  • конструкция решетки;
  • наличие легирующих компонентов в АКБ.

На R сепараторов влияет перемена пористости и толщины. У электролита оно зависит от его температуры и концентрации. Если электролит замерзнет, то показатель достигнет бесконечности.

Надо сказать, что каким бы ни было внутреннее сопротивление аккумулятора, оно будет зависеть от частоты.

Измерение сопротивления

Величина эта - условная. Она меняется в зависимости от степени заряженности АКБ, величины нагрузки, температур Вот почему при точных расчетах относительно АКБ принято пользоваться не величиной внутреннего сопротивления, а так называемыми разрядными кривыми.

Однако бывают ситуации, когда нужно узнать внутреннее сопротивление автомобильного аккумулятора. Для этих целей можно применить лампу накаливания от фары.

Этот вариант даст вполне точный результат. Например, это может быть галогеновая лампа с мощностью в 60 Ватт.

Производится параллельное подключение к батарее вольтметра и вышеупомянутой лампы. Далее нужно запомнить значение напряжения. Затем лампа отключается. Естественно, после этого напряжение возрастёт. Если последнее увеличилось не больше, чем на 0,02 вольт, стало быть, АКБ находится в удовлетворительном состоянии. То есть, внутреннее R не больше 0,01 Ом.

Самостоятельно узнать этот параметр совсем несложно. Главное при этом - не использовать светодиодные лампы. На всю процедуру уйдет несколько минут.

Опыт автолюбителей

Никогда не занимаюсь этим самостоятельно. Да и вообще редко ухаживаю за батареей так, как мне следует этим заниматься. Поэтому часто возникают трудности с зажиганием. Приходится ездить в автомобильные мастерские, чтобы избавиться от них. Плачу деньги, зато не трачу свои силы и время.

Игорь Слабкин

Измерять, конечно, нужно. Но не ориентируйтесь на абсолютные показатели, взятые из интернета. Куда актуальнее сравнивать новые результаты со старыми, ведь они будут сильно зависеть не только от модели, но и от природных условий. Конечно, определенные рамки и нормы все-таки существуют, но их нужно брать только из официальной спецификации, представленной на корпусе устройства или в родной упаковке.

Кирилл Семенов

Регулярно измеряю этот параметр. Однажды он получился слишком большим. Долго разбирался в причине, а потом понял, что что-то случилось с обмазкой. Из-за чего - так и не понял, но поправил это быстро. Просто заменил элемент. С зажиганием до сих пор все нормально, так что делать так можно.

Александр Рассказов

Постоянно ухаживаю за батареей своего автомобиля, т. к. опасаюсь, что он не заведется в самой неподходящей для этого ситуации. Измеряю все параметры, в том числе и этот. Только так можно понять ситуацию полностью и отследить изменения. Это важно для диагностики возможных проблем и неисправностей.

Виктор Кузнецов

Раньше не понимал, как узнать, какое внутреннее сопротивление у аккумулятора. Как оказалось, процедура весьма простая - точно не сложнее измерения полной емкости. Процедура занимает всего несколько минут. Только лампы нужны не светодиодные, а самые обыкновенные.

Категория: Поддержка по аккумуляторным батареям Опубликовано 12.09.2016 15:51

Внутреннее сопротивление предоставляет ценную информацию об аккумуляторе, способную подсказать об окончании его срока службы. Это особенно актуально для электрохимических систем на основе никеля . Сопротивление не является единственным индикатором производительности, оно вполне может отличаться на 5-10 процентов у различных партий свинцово-кислотных аккумуляторов , особенно для стационарного использования. Из-за такого широкого допуска, метод, основанный на сопротивлении, лучше всего работает при сравнении показаний, взятых у конкретного аккумулятора при его сборке с последующими временными периодами. Сервисные бригады уже рекомендуют при установке снимать показания каждого элемента или аккумулятора в целом, чтобы в дальнейшем контролировать процесс их старения.

Существует мнение, что внутреннее сопротивление связано с емкостью, но это неверно. Сопротивление современных свинцово-кислотных и литий-ионных аккумуляторов остается на одном уровне на протяжении большей части срока службы. Специальные добавки в электролит уменьшили проблему внутренней коррозии, которая и коррелирует с внутренним сопротивлением. На рисунке 1 показано уменьшение емкости при циклической работе по отношению к внутреннему сопротивлению у литий-ионного аккумулятора.

Рисунок 1: Взаимосвязь между емкостью и сопротивлением относительно количества циклов зарядки/разрядки. Сопротивление не раскрывает состояние работоспособности аккумулятора и часто остается на одном уровне в процессе его использования и старения.

Циклические испытания литий-ионных аккумуляторов проводились при С-рейтинге 1С:
Зарядка: 1.500мА до 4,2В при 25°С
Разрядка: 1.500ма до 2,75В при 25°С

Что такое сопротивление?

Прежде чем изучать различные методы измерения внутреннего сопротивления электрических батарей, давайте рассмотрим, что же такое электрическое сопротивление и в чем разница между просто сопротивлением (R) и импедансом (Z). R является сопротивлением вещества прохождению электрического тока, а Z включает в себя реактивную составляющую, присущую таким устройствам как катушки и конденсаторы. Оба показателя измеряются в омах (Ом), единице измерения, которая названа в честь немецкого физика Георга Симона Ома, который жил с 1798 по 1854 год. (1Ом приводит к падению напряжения на 1В при силе тока 1А). Электропроводность также может быть измерена в сименсах (S). Комбинация сопротивления и импеданса известна как реактивное сопротивление. Позвольте объяснить.

Электрическое сопротивление обычной нагрузки, такой как нагревательный элемент, не имеет реактивной составляющей. Напряжение и ток в нем текут в унисон - не возникает никаких сдвигов в их фазах. Электрическое сопротивление, вызванное противодействием материала, через который течет ток, по сути является одним и тем же что для постоянного (DC), что для переменного (AC) токов. Коэффициент мощности равен единице, что обеспечивает наиболее точное измерение потребляемой мощности.

Большинство электрических нагрузок все же являются реактивными, и могут включать в себя емкостное (конденсатор) и индуктивное (катушка) сопротивление. Емкостное сопротивление уменьшается с повышением частоты переменного тока, в то время как индуктивное возрастает. Аналогией индуктивного сопротивления может служить масляный амортизатор, который становится тугим при быстрых движениях назад и вперед.

У электрической батареи есть и сопротивление, и емкость, и индукция, все эти три параметра объединены в понятии импеданса. Лучше всего импеданс проиллюстрирован на схеме Рэндла (рисунок 2), которая содержит резисторы R1 и R2, а также конденсатор С. Индуктивное сопротивление обычно опускается, так как оно играет незначительную роль в электрических батареях, особенно при низких частотах.

Рисунок 2: Эквивалентная схема Рэндла для свинцово-кислотной аккумуляторной батареи. Общее сопротивление батареи состоит из активного сопротивления, а также индуктивного и емкостного. Схема и электрические значения различаются для каждой батареи.

    R1 - эквивалентное последовательное сопротивление

    R2 - сопротивление переноса заряда

    С - двухслойный конденсатор

Попытки измерения внутреннего сопротивления электрической батареи почти так же стары, как и она сама, и с течением времени было разработано несколько методов, которые используются до сих пор.

Метод измерения сопротивления нагрузкой постоянного тока (DC Load)

Омические измерения являются одними из старейших и надежнейших методов испытаний. Их смысл состоит в кратковременном (секунда или немного больше) разряде аккумуляторной батареи. Ток нагрузки для небольшого аккумулятора составляет 1А или меньше, а для большого, например, стартерного аккумулятора - 50А и более. Вольтметр измеряет напряжение разомкнутой цепи без нагрузки, а затем проводится второе измерение - уже с подключенной нагрузкой. Далее по закону Ома вычисляется значение сопротивления (разность потенциалов, деленная на силу тока).

Метод измерения нагрузки постоянного тока хорошо работает для больших стационарных аккумуляторных батарей и снимаемые омические показатели являются точными и повторяемыми. Высококачественные контрольно-измерительные приборы позволяют снимать показания сопротивления в диапазоне от 10мкОм. Во многих гаражах для измерения сопротивления стартерных аккумуляторов используются тестеры на плёночно-угольных резисторах, благодаря которым опытные автомеханики получают отличный инструмент для оценки необходимого параметра.

Однако этот метод имеет ограничение в том, что он объединяет резисторы R1 и R2 со схемы Рэндла в один резистор и игнорирует конденсатор (смотрите рисунок 3). “С” является компонентом эквивалентной схемы электрической батареи, принимая значение в 1,5 фарада за каждые 100Ач. По сути, метод измерения нагрузкой постоянного тока видит аккумулятор как резистор и может принять в расчет только активную составляющую электрохимического источника тока. Кроме того, этот метод получит аналогичные показания от хорошего аккумулятора, который заряжен частично, и от слабого, который заряжен полностью. Определение степени работоспособности и оценка емкости в этом случае не представляются возможными.

Рисунок 3: Метод измерения нагрузкой постоянного тока. Метод не показывает полного соответствия схеме Рэндла. R1 и R2 работают как одно активное сопротивление.

Существует и альтернативный метод - двухуровневое измерение нагрузкой постоянного тока, когда применяются две последовательные разрядные нагрузки с различной силой тока и продолжительностью. Сначала аккумулятор разряжается малым током в течение 10 секунд, а затем более высоким в течение трёх (смотрите рисунок 4); после, по закону Ома вычисляется значение сопротивления. Анализ напряжения при двух различных условиях нагрузки предоставляет дополнительную информацию об аккумуляторе, но полученные значения строго резистивные, и не раскрывают параметры степени работоспособности или емкости. Методы, использующие подключение нагрузки, являются предпочтительными для аккумуляторов, питающих нагрузку с постоянным током.

Данный метод тестирования отвечает стандарту IEC 61951-1:2005 и обеспечивает реалистичные условия испытаний для многих DC (англ. direct current - постоянный ток) применений аккумуляторов.

Метод измерения электрической проводимости переменным током (AC Cunductance)

Измерение электрической проводимости для оценки стартерных аккумуляторов впервые было предложено в 1975 году Кейтом Чамплином, и заключалось в демонстрации линейной корреляции между нагрузочными испытаниями и проводимостью. При подключении нагрузки переменного тока с частотой около 90Гц, емкостное и индуктивное сопротивление соответствует 70-90Ач свинцово-кислотному аккумулятору, в результате чего возникает незначительная задержка фазы напряжения, которая сводит к минимуму реактивное сопротивление. (Частота возрастает для меньшего аккумулятора и, соответственно, уменьшается для большего). Измерители электрической проводимости переменным током обычно используются в автомобильных гаражах для измерения пускового тока. Одночастотный метод (рисунок 5) видит компоненты схемы Рэндла в качестве одного комплексного импеданса, который называется модуль Z.

Рисунок 5: Метод измерения электрической проводимости переменным током. Отдельные компоненты схемы Рэндла соединяются в один элемент и не могут быть измерены по отдельности.

Еще одним распространенным методом является тестирование с помощью частоты 1000Гц. Такая частота возбуждает аккумулятор и по закону Ома можно вычислить сопротивление. Следует отметить, что методы, использующие переменное напряжение, показывают другие значения в сравнении с методами, основанными на постоянном напряжении при измерении реактивного сопротивления, и оба подхода являются верными.

Например, литий-ионный элемент типоразмера 18650 имеет сопротивление около 36мОм с нагрузкой переменного тока частотой 1000Гц и примерно 110мОм с нагрузкой постоянного тока. Поскольку оба вышеуказанных показания справедливы, но далеки друг от друга, потребитель должен взять во внимание специфику эксплуатации аккумулятора. Метод, использующий постоянный ток, дает ценные данные в разрезе применения с потребителями постоянного тока, например, нагревательными элементами или лампами накаливания, в то время как 1000Гц метод лучше отражает требования производительности, оптимизированные под питание различных цифровых устройств, таких как ноутбуки или мобильные телефоны, которым, в первую очередь, важны емкостные характеристики аккумуляторов. На рисунке 6 показан 1000Гц метод.

Рисунок 6: 100Гц метод. Данный метод обеспечивает получение значений реактивного сопротивления. Это предпочтительный метод для снятия импеданса аккумуляторов, питающих цифровые устройства.

Электрохимическая импеданс спектроскопия (Electrochemical Impedance Spectrocsopy - EIS)

Научно-исследовательские лаборатории уже много лет используют метод EIS для того, чтобы оценивать характеристики электрических батарей. Но высокая стоимость оборудования, большая длительность испытаний и потребность в квалифицированных специалистах для расшифровки большого объема данных ограничили применение этой технологии лабораторными условиями. EIS способна получать значения R1, R2 и C из схемы Рэндла (рисунок 7), однако корреляция этих данных в пусковой ток (ток холодной прокрутки) или оценку емкости требует комплексного моделирования (Смотрите BU-904: Как измерить емкость).

Рисунок 7: Spectro™ метод. R1, R2 и C измеряются отдельно, что позволяет проводить оценку степени работоспособности и емкости наиболее эффективно.


Эксплуатация цифрового фотоаппарата с никель - кадмиевыми и никель - металлогидридными щелочными герметичными цилиндрическими аккумуляторами типоразмера АА подтолкнула меня к осознанию необходимости изготовления устройства для определения внутреннего сопротивления аккумулятора. В цифровом фотоаппарате аккумулятор работает при достаточно больших токах разряда – 300 – 600 мА. Практикой определено, что автоматика цифровых фотоаппаратов некорректно определяет остаточную ёмкость аккумулятора и выключает фотоаппарат. А аккумуляторы, вынутые из фотоаппарата, ещё приходится разряжать в менее привередливых устройствах: в фонариках, игрушках, плеерах.

Определение внутреннего сопротивления аккумулятора, надеюсь, мне даст возможность определять на практике пригодность конкретного аккумулятора к работе в цифровом фотоаппарате. Реклама в этом вопросе оказалась плохим подсказчиком, если еще учесть, что электродвижущая сила никель - кадмиевых аккумуляторов равна 1,2 вольта, а электродвижущая сила никель - металлогидридного аккумуляторов равна 1,25 вольта (по данным Википедии).



Методологию измерения внутреннего сопротивления аккумуляторов я в основном использовал из документа – Гост Р МЭК 60285-2002 «Аккумуляторы никель - кадмиевыми герметичные цилиндрические».


Я использовал сопротивление 12 Ом. Собрал из них и тумблера 2 разрядные цепи. Разрядные токи получились около 100 мА, 300 мА. Для измерения напряжения на сопротивлениях я использовал мультиметр APPA93N на диапазоне 2 Вольта. Собирал схему из того, что было. Резисторов меньшего сопротивления я не нашел. Корпус я использовал от старого микрокалькулятора. Сопротивление я установил на кусок макетной платы. Опытным путем выяснил, что для оценки качества источников питания лучше увеличить токи разряда.





Схема измерителя внутреннего сопротивления никель - кадмиевых, никель - металлогидридных щелочных герметичных цилиндрических аккумуляторов и щелочных батареек типоразмера АА:


Готовый измеритель внутреннего сопротивления никель - кадмиевых, никель - металлогидридных щелочных герметичных цилиндрических аккумуляторов и щелочных батареек типоразмера АА:




Первое испытание никель - металлогидридными щелочными герметичными цилиндрическими аккумуляторами типоразмера АА фирмы Pleomax ёмкостью 2300 мАч. Напряжение (U1) на аккумуляторе, нагруженном на резисторе 12 Ом, составило 1,271 Вольта. Используя закон Ома, определяем силу тока в цепи (I1) . Сила тока равна 0,105917 Ампера или 105,917 мА. Переключаем тумблер. Напряжение (U2) на аккумуляторе, нагруженном на резисторе 4 Ом, составило 1,175 Вольта. Используя закон Ома, определяем силу тока в цепи (I2). Сила тока равна 0,29375 Ампера или 293,75 мА. Используя формулу для определения внутреннего сопротивления аккумулятора из Госта Р МЭК 60285-2002 «Аккумуляторы никель - кадмиевыми герметичные цилиндрические» (Uвн=U1-U2/I2-I1), рассчитываем его – 0,511 Ом. Расчеты я автоматизировал. Для этого создал файл Wicrosoft Exel – расчеты.xlsx.
Расчеты.rar
В этом файле можно подставить измеренные значения напряжения U1, U2 и ваши значения нагрузочных сопротивлений и получить результат вычисления – внутреннее сопротивление аккумулятора или батарейки.


У меня скопилось небольшое количество аккумуляторов. Решил я их протестировать. Результаты тестирования я занес в таблицу.
Выберите рубрику Видео (17) Новости (9) Разное (8) Информация (29) Официальные дилеры (23) Публикации (359) Коротко (4) Новости (30) Обзоры (7) Отзывы (14) Toyota Corolla (7) Toyota RAV4 (6) Советы (60) Статьи (258) Руководства по ремонту (1 247) Corolla 120, Fielder, Allex, Runx 2000-06 г.г. (806) Автоматическая коробка передач (44) Двигатели 1NZ-FE (1,5) и 2NZ-FE (1,3). Механическая часть (20) Блок цилиндров 1NZ-FE и 2NZ-FE (5) Головка блока цилиндров 1NZ-FE и 2NZ-FE (5) Двигатель в сборе 1NZ-FE и 2NZ-FE (2) Проверка и регулировка зазоров в приводе клапанов 1NZ-FE и 2NZ-FE (1) Цепь привода ГРМ 1NZ-FE и 2NZ-FE (6) Двигатель 1ZZ-FE. Механическая часть (15) Блок цилиндров 1ZZ-FE (4) Головка блока цилиндров 1ZZ-FE (4) Двигатель в сборе 1ZZ-FE (1) Проверка и регулировка зазоров в приводе клапанов 1ZZ-FE (1) Цепь привода ГРМ 1ZZ-FE (5) Двигатель 2ZZ-GE. Механическая часть (16) Блок цилиндров 2ZZ-GE (1) Головка блока цилиндров 2ZZ-GE (5) Двигатель в сборе 2ZZ-GE (1) Ось коромысел и коромысла 2ZZ-GE (3) Проверка и регулировка зазоров в приводе клапанов 2ZZ-GE (1) Цепь привода ГРМ 2ZZ-GE (5) Двигатель - общие процедуры ремонта (19) Блок цилиндров (8) Головка блока цилиндров (3) Система VVT-i (7) Задние приводные валы (модели 4WD) (5) Задняя подвеска (модели 2WD) (15) Задняя подвеска (модели 4WD) (21) Идентификация автомобиля (6) Карданный вал (модели 4WD) (6) Кондиционер, отопление и вентиляция (55) Блок кондиционера и отопителя (8) Диагностика системы кондиционирования (4) Компрессор (5) Панель управления кондиционером и отопителем (1) Проверка электрических элементов (14) Кузов (71) Багажник (седан) (3) Заднее боковое стекло (универсал) (3) Заднее стекло (седан) (3) Задний бампер (6) Задняя боковая дверь (6) Задняя дверь (универсал) (4) Задняя дверь (хэтчбек) (4) Капот (2) Лобовое стекло (3) Люк (4) Молдинг сливного желоба (2) Отделка крыши (11) Панель приборов (6) Передний бампер (2) Передняя дверь (6) Стекло задней двери (универсал) (3) Стекло задней двери (хэтчбек) (3) Насос ГУР (5) Общая информация (9) Передние приводные валы (1NZ-FE, 2NZ-FE, 1ZZ-FE, 2ZZ-GE) (11) Передняя подвеска (23) Подвеска (12) Проверка и регулировка углов установки задних колес (5) Проверка и регулировка углов установки передних колес (5) Проверка замков дверей (6) Проверка рулевой рейки (3) Редуктор заднего моста (модели 4WD) (8) Руководство по эксплуатации (69) Индикаторы комбинации приборов и звуковые сигналы (35) Сиденья (8) Советы по вождению в различных условиях (8) Рулевая колонка (7) Рулевая рейка (модели с ГУР) (3) Рулевая рейка (модели с ЭУР) (2) Рулевое управление (5) Система безопасности (SRS) (19) Система впрыска топлива (EFI) (67) Диагностические коды неисправностей системы управления двигателем (2) Корпус дроссельной заслонки 1NZ-FE, 2NZ-FE, 1ZZ-FE, 2ZZ-GE (7) Меры предосторожности (10) Проверка компонентов топливной системы 1NZ-FE, 2NZ-FE, 1ZZ-FE, 2ZZ-GE (2) Система впрыска топлива (EFI). Напряжение на выводах электронного блока управления 1NZ-FE, 2NZ-FE, 1ZZ-FE, 2ZZ-GE (7) Система диагностирования (4) Система электронного управления 1NZ-FE, 2NZ-FE, 1ZZ-FE, 2ZZ-GE (21) Топливная система 1NZ-FE, 2NZ-FE, 1ZZ-FE, 2ZZ-GE (2) Топливный бак 1NZ-FE, 2NZ-FE, 1ZZ-FE, 2ZZ-GE (3) Топливный насос 1NZ-FE, 2NZ-FE, 1ZZ-FE, 2ZZ-GE (3) Форсунки 1NZ-FE, 2NZ-FE (2) Форсунки 1ZZ-FE, 2ZZ-GE (2) Система запуска (8) Система зарядки (11) Генератор (5) Проверка генератора (3) Система контроля за давлением в шинах (6) Система охлаждения (16) Насос охлаждающей жидкости (1ZZ-FE) (2) Насос охлаждающей жидкости (2ZZ-GE) (2) Насос охлаждающей жидкости (серия NZ) (2) Радиатор (2) Термостат (4) Электровентилятор (2) Система смазки (13) Масляный насос (1NZ-FE, 2NZ-FE) (2) Масляный насос (1ZZ-FE) (2) Масляный насос (2ZZ-GE) (2) Системы ABS, ВА и EBD (18) Системы улучшения управляемости автомобиля (ABS, TRC, VSC и ВА) (21) Технические характеристики двигателей, устанавливавшихся на Toyota Corolla 120 (2) Техническое обслуживание и общие процедуры проверки и регулировки (23) Тормозная система (40) Вакуумный усилитель тормозов (4) Главный тормозной цилиндр (6) Задние барабанные тормоза (4) Задние дисковые тормоза (5) Педаль тормоза (2) Передние тормоза (5) Рычаг и тросы привода стояночного тормоза (5) Стояночный тормоз (5) Электрооборудование кузова (102) Аудиосистема (7) Замок зажигания (1) Комбинация приборов (22) Общая информация (2) Реле и предохранители (12) Система MultiVision (4) Система дистанционного управления центральным замком (3) Стеклоочистители и стеклоомыватели (7) Фары и освещение (22) Центральный замок (5) Электропривод зеркал заднего вида (5) Электропривод люка (3) Электропривод стеклоподъемников (9) Электроусилитель рулевого управления (6) Toyota RAV4 (1994-2006) (319) Бензиновые двигатели — выпуск с 2001 года (25) Бензиновые двигатели выпуск до 2000 года (31) Дизельные двигатели (21) Кузов (33) Подвеска и рулевое управление (21) Системы охлаждения, отопления и кондиционирования воздуха (19) Системы управления двигателем и снижения токсичности отработавших газов — бенз-е двигатели (19) Системы управления двигателем и снижения токсичности отработавших газов — диз-е двигатели (11) Снятие двигателя и процедуры ремонта (33) Сцепление и приводные валы (16) Топливная и выпускная системы — бензиновые двигатели (18) Топливная и выпускная системы — дизельные двигатели (14) Тормозная система (20) Трансмиссия. Автоматическая КПП (АКПП) (15) Трансмиссия. Механическая КПП (МКПП) (5) Электрооборудование двигателя (17) Основы диагностики электрооборудования автомобиля (126) Аккумуляторные батареи (19) Основы электротехники и электроники (35) Системы заряда аккумулятора (37) Раздел А: Генератор переменного тока (22) Раздел Б: Генератор постоянного тока (динамомашина) (14) Стартеры (17) Стрелочные и цифровые приборы (17) Тесты для водителей (5) Электросхемы (55) Corolla 120, Fielder, Allex, Runx (2000-2006) (55)

4,2 — 0,22 = 3,98 Вольт.

И это совсем другое дело ….Если взять и соединить последовательно пять таких параллельных секций, мы получим батарею с напряжением —

Uбат=3,98В*5=19,9 Вольт, емкостью —
Сбат=2,2А/ч*5=11А/ч….

способную отдать в нагрузку ток 10 Ампер….
Вот, как-то так…

P.S. ….поймал себя на мысли, что удовольствие тоже можно мерить в А/ч…..

____________________

Согласен, что описанный выше метод может привести к большой погрешности в измерениях внутреннего сопротивления, но …., на самом деле, абсолютная величина этого сопротивления нас интересует мало — нам важен сам способ, который даст возможность объективно и достаточно быстро оценить » здоровье » каждого элемента …Практика показала, что сопротивления элементов отличаются в разы…, и зная только величину внутреннего сопротивления можно легко найти «симулянтов»….
Измерение внутреннего сопротивления LiFePO4 элементов, рассчитанных на очень большие разрядные токи, может вызвать некоторые трудности, связанные с необходимостью нагружать их очень большими токами …, но про это ничего сказать не могу, тк практически этого не делал….

Как измерить внутреннее сопротивление аккумулятора

Если замкнуть плюс и минус аккумулятора, то получим ток короткого замыкания Ie = U / Re , как будто внутри есть сопротивление Re . Внутреннее сопротивление зависит от электрохимических процессов внутри элемента, в том числе и от тока.

При слишком большом токе аккумулятор испортится, и даже может взорваться. Поэтому не замыкайте плюс и минус. Достаточно мысленного эксперимента.

Величину Re можно оценить косвенно по изменению тока и напряжения на нагрузке Ra . При небольшом уменьшении сопротивления нагрузки Ra до Ra‑dR ток увеличивается от Ia до Ia+dI. Напряжение на выходе элемента Ua=Ra×Ia при этом уменьшается на величину dU = Re × dI . Внутреннее сопротивление определяется по формуле Re = dU / dI

Для оценки внутреннего сопротивления аккумулятора или батарейки я добавил в схему измерителя ёмкости резистор 12ом и тумблер (ниже на схеме показана кнопка), чтобы изменять ток на величину dI = 1.2 V / 12 Ohm = 0.1 А. Одновременно нужно измерять напряжение на аккумуляторе или на резисторе R .

Можно сделать простую схему только для измерения внутреннего сопротивления по образцу, показанному на рисунке внизу. Но всё же лучше сначала немного разрядить аккумулятор, и после этого измерить внутреннее сопротивление. В середине разрядная характеристика более пологая, и измерение будет более точным. Получится «среднее» значение внутреннего сопротивления, которое остаётся стабильным достаточно большое время.

Пример определения внутреннего сопротивления

Подключаем аккумулятор и вольтметр. Вольтметр показывает 1.227V . Нажимаем кнопку: вольтметр показывает 1.200V .
dU = 1.227V — 1.200V = 0.027V
Re = dU / dI = 0.027V / 0.1A = 0.27 Ohm
Это внутреннее сопротивление элемента при токе разряда 0.5А

Тестер показывает не dU, а просто U. Чтобы не ошибиться в устном счёте, я делаю так.
(1) Нажимаю кнопку. Аккумулятор начинает разряжаться, и напряжение U начинает уменьшаться.
(2) В момент, когда напряжение U достигнет круглой величины, например 1.200V, я отжимаю кнопку, и сразу вижу величину U+dU, например 1.227V
(3) Новые цифры 0.027V — и есть нужная разница dU.

По мере старения аккумуляторов их внутреннее сопротивление увеличивается. В какой-то момент вы обнаружите, что ёмкость даже свежезаряженного аккумулятора невозможно измерить, так как при нажатии кнопки Start реле не включается и часы не запускаются. Это получается потому, что напряжение на аккумуляторе сразу снижается до 1.2V и менее. Например, при внутреннем сопротивлении 0.6 ом и токе 0.5 А падение напряжения составит 0.6×0.5=0.3 вольта. Такой аккумулятор не может работать при токе разряда 0.5А, который требуется, например, для кольцевой светодиодной лампы. Этот аккумулятор можно использовать при меньшем токе — для питания часов или беспроводной мышки. Именно по большой величине внутреннего сопротивления современные зарядные устройства, вроде MH-C9000, определяют, что аккумулятор неисправен.

Внутреннее сопротивление автомобильного аккумулятора

Для оценки внутреннего сопротивления АКБ можно использовать лампу от фары. Это должна быть лампа накаливания, например, галогеновая, но не светодиодная. Лампа 60вт потребляет ток 5А.

При токе 100А на внутреннем сопротивлении АКБ не должно теряться более 1 Вольта. Соответственно, при токе 5А не должно теряться более 0.05 Вольта (1В * 5А / 100А). То есть, внутреннее сопротивление не должно превышать 0.05В / 5А = 0.01 Ома.

Подключите параллельно аккумулятору вольтметр и лампу. Запомните величину напряжения. Отключите лампу. Обратите внимание, насколько увеличилось напряжение. Если, допустим, напряжение возросло на 0.2 Вольта (Re = 0.04 Ома), то аккумулятор испорчен, а если на 0.02 Вольта (Re = 0.004 Ома), то он исправен. При токе 100А потеря напряжения будет всего 0.02В * 100А / 5А = 0.4В

Внутреннее сопротивление аккумулятора. Что такое внутреннее сопротивление аккумулятора?

1. Что такое внутреннее сопротивление аккумулятора?

Возьмем свинцовый кислотный аккумулятор с емкостью 1 А*час и с номинальным напряжением 12 В. В полностью заряженном состоянии аккумулятор имеет напряжение примерно U = 13 В. Какой ток I потечет через аккумулятор, если к нему подключить резистор с сопротивлением R =1 Ом? Нет, не 13 ампер, а несколько меньше — около 12.2 А. Почему? Если мы измерим напряжение на аккумуляторе, к которому подключен резистор, то увидим, что оно примерно равно 12.2 В — напряжение на аккумуляторе упало из-за того, что скорость диффузии ионов в электролите не бесконечно велика.

Электрики в своих расчетах привыкли составлять электрические цепи из элементов с несколькими полюсами. Условно, можно и аккумулятор представить в виде двухполюсника с ЭДС (электродвижущей силой — напряжением без нагрузки) E и внутренним сопротивлением r . При этом предполагается, что часть ЭДС аккумулятора падает на нагрузке, а другая часть — на внутреннем сопротивлении аккумулятора. Иначе говоря, предполагается, что верна формула:

Почему внутреннее сопротивление аккумулятора — условная величина? Потому что свинцовый аккумулятор — принципиально нелинейное устройство и его внутреннее сопротивление не остается постоянным, а изменяется в зависимости от нагрузки, заряженности аккумулятора и многих других параметров, о которых мы поговорим чуть позднее. Поэтому точные расчеты работы аккумуляторов нужно проводить, пользуясь разрядными кривыми, предоставляемыми производителем аккумуляторов, а не внутренним сопротивлением аккумулятора. Но для расчетов работы цепей, связанных с аккумулятором, внутреннее сопротивление аккумулятора использовать можно, отдавая себе каждый раз отчет в том, о какой величине идет речь: о внутреннем сопротивлении аккумулятора при зарядке или разряде, о внутреннем сопротивлении аккумулятора на постоянном токе или переменном, а если переменном, то какой частоты и т.д.

Теперь, вернувшись к нашему примеру, мы можем примерно определить внутреннее сопротивление аккумулятора 12 В, 1 А*час на постоянном токе.

r = (E — U) / I = (13В — 12.2В) / 1А = 0.7 Ом.

2. Как связаны внутреннее сопротивление аккумулятора и проводимость аккумулятора?

По определению, проводимость — есть величина обратная сопротивлению. Поэтому и проводимость аккумулятора S обратна внутреннему сопротивлению аккумулятора r.

Единицей проводимости аккумулятора в системе СИ являются Сименсы (См).

3. От чего зависит внутреннее сопротивление аккумулятора?

Падение напряжения на свинцовом аккумуляторе не пропорционально разрядному току. При больших разрядных токах, диффузия ионов электролита происходит в свободном пространстве, а при маленьких токах разряда аккумулятора — сильно ограничивается порами активного вещества пластин аккумулятора. Поэтому внутреннее сопротивление аккумулятора при больших токах в несколько раз (для свинцового аккумулятора) меньше, чем внутреннее сопротивление того же аккумулятора при малых токах.

Как известно, аккумуляторы большой емкости больше и массивнее аккумуляторов малой емкости . У них больше рабочая поверхность пластин и больше пространства для диффузии электролита внутри аккумулятора. Поэтому внутреннее сопротивление аккумуляторов большой емкости меньше, чем внутреннее сопротивление аккумуляторов меньшей емкости .Измерения внутреннего сопротивления аккумуляторов на постоянном и переменном токе показывают, что внутреннее сопротивление аккумулятора сильно зависит от частоты. Ниже приводится график зависимости проводимости аккумуляторов от частоты, который взят из работы австралийских исследователей.

Из графика следует, что внутреннее сопротивление свинцового аккумулятора имеет минимум при частотах порядка сотен герц.

При высокой температуре скорость диффузии ионов электролита выше, чем при низкой. Эта зависимость имеет линейный характер. Она и определяет зависимость внутреннего сопротивления аккумулятора от температуры. При более высокой температуре, внутреннее сопротивление аккумулятора ниже, чем при низкой температуре.

Во время разряда аккумулятора, количество активной массы на пластинах аккумулятора уменьшается, что приводит к уменьшению активной поверхности пластин. Поэтому внутреннее сопротивление заряженного аккумулятора меньше, чем внутреннее сопротивление разряженного аккумулятора.

4. Можно ли использовать внутреннее сопротивление аккумулятора для проверки аккумулятора ?

Уже довольно давно известны приборы для проверки аккумуляторов, принцип действия которых базируется на связи между внутренним сопротивлением аккумулятора и емкостью аккумулятора . Некоторые приборы (нагрузочные вилки и подобные приборы) предлагают оценить состояние аккумулятора по напряжению аккумулятора под нагрузкой (что похоже на измерение внутреннего сопротивления аккумулятора на постоянном токе). Применение других (измерителей внутреннего сопротивления аккумулятора на переменном токе) основано на связи внутреннего сопротивления с состоянием аккумулятора. Третий тип приборов (измерители спектров) позволяет сравнивать спектры внутреннего сопротивления аккумуляторов на переменном токе различных частот и делать выводы о состоянии аккумулятора на их основе.

Само по себе внутреннее сопротивление (или проводимость) аккумулятора позволяет только качественно оценить состояние аккумулятора. К тому же, производители подобных приборов не указывают, на какой частоте происходит измерение проводимости и каким током производится испытание. А, как мы уже знаем, внутреннее сопротивление аккумулятора зависит и от частоты и и от тока. Следовательно, измерение проводимости не дает количественной информации, которая позволила бы пользователю прибора определить, сколько времени проработает аккумулятор при следующем разряде на нагрузку. Этот недостаток связан с тем, между емкостью аккумулятора и внутренним сопротивлением аккумулятора нет однозначной зависимости.

Самые современные тестеры аккумуляторов основаны на анализе осциллограммы отклика аккумулятора на сигнал специальной формы. Они быстро оценивают емкость аккумулятора , что позволяет следить за износом и старением свинцового аккумулятора , рассчитать длительность разряда аккумулятора при данном его состоянии и составить прогноз оставшегося ресурса свинцового аккумулятора.

Берегите природу. Не выбрасывайте вышедшие из строя аккумуляторы — сдавайте их для утилизации в специализированную фирму.

Добавить в Анти-Баннер

Похожие публикации