Датчик качания своими руками. Датчик колебаний для автосигнализации

Кроме обычных контактных датчиков необходимым элементом для любой охранной сигнализации, устанавливаемой на автомобиле, является датчик колебаний. Он должен реагировать также на удары и любые вибрации корпуса. При этом необходимо обеспечить срабатывание, если амплитуда колебаний превысит заданную величину.

В простейших серийных промышленных системах охраны (среднего класса) чаще всего используют один из двух видов датчиков колебаний: выполненные на основе пьезоэффекта или электромагнитной индукции.

В литературе уже публиковались конструкции электромагнитных датчиков, выполненные на основе механизма стрелочного измерительного прибора — микроамперметра. Предлагаемый

датчик имеет аналогичный принцип работы (магнитное поле наводит Э. Д. С. в катушке), но его конструкция является более стойкой к механическим перегрузкам, так как в этой колебательной системе катушка закреплена неподвижно, а перемещается только магнит. Вся конструкция позволяет уменьшить габариты датчика.

По сравнению с датчиками, выполненными на основе пьезо-элемента, на данное устройство меньше влияет изменение температуры и оно более чувствительно, особенно к медленным колебаниям корпуса автомобиля.

Датчиком вибрации (ударов) и колебаний является катушка L1 с закрепленным над ней магнитом, рис. 3.12. Магнит крепится клеем “Момент” к латунной пружинящей пластине. Все элементы крепления катушки, показанные на рисунке, использованы латунные (подойдет также любой другой не магнитный материал, например алюминий или пластмасса).

Катушка датчика намотана на пластмассовом каркасе, рис. 3.13, проводом ПЭЛ диаметром 0,08…0,1 мм (внавал до заполнения). Это примерно около 1800 витков (в моем варианте индуктивность получилась 3,3 мГн).

При колебаниях магнита в катушке наводится напряжение, которое усиливается операционным усилителем (DA1), рис. 3.14. Операционный усилитель работает без обратной связи — с максимальным коэффициентом усиления, т.е. как компаратор. В исходном состоянии на его выходе DA1/6 будет уровень лог. “О” (не более 0,5 В), а при колебаниях магнита появятся импульсы. Эти импульсы открывают транзистор VT1 и начнет моргать светодиод HL1. Транзистор VT2 должен быть постоянно открыт поданным на базу^положительным напряжением в случае если сигнализация включена.

Стабилитрон VD1 предотвращает повреждение микросхемы повышенным напряжением, а диод VD2 предохраняет от неправильной полярности подачи питания на схему датчика.

Вся схема датчика за счет того, что в нем используется микромощная микросхема, потребляет от источника 12 В в режиме ожидания ток не более 0,1 мА, а при свечении светодиода до 6 мА.

Чувствительность датчика зависит от гибкости пластины, на которой крепится магнит, и может быть довольно высокой. И чтобы ее снизить до нужного уровня, служит регулировочный резистор R2, который позволяет менять порог срабатывания компаратора DA1. Это удобно при неблагоприятных погодных условиях. Например, во время дождя или сильного ветра, когда чувствительность следует уменьшить, чтобы исключить ложные срабатывания. А для удобства настройки чувствительности датчика служит светодиод HL1. Момент срабатывания контролируется по его свечению.

Если датчик будет установлен в самоКл блоке охраны, то сигнал с коллектора VT1 может сразу подключаться к сигнализации.

При установке устройства в автомобиле следует учитывать, что от места установки, а также плоскости колебаний магнита, зависит чувствительность датчика. Поэтому конструктивно датчик удобнее выполнять в виде отдельного блока, который подключается к сигнализации тремя проводами. Аналогично делают в промышленных системах охраны, например в системе “Red Scorpio-600″ третий провод применяется для электронного управления включением датчика (в случае, если вы его не будете использовать, то вместо транзистора VT2 на плате устанавливается перемычка эмиттер-коллектор).

В схеме применены детали: подстроенный резистор R2 типа СП4-9 на 0,5 Вт (СПЗ-166), остальные МЛТ мощностью 0.125 Вт. Транзисторы могут быть с любой последней буквой в обозначении и они заменимы на любые аналогичные с соответствующей проводимостью.

Конденсаторы С1, СЗ из серии К10 (К10-17), оксидный С2 — К50-35 на 25 В. Светодиод HL1 может применяться любого типа. Для удобства подключения внешних проводов к датчику на плате установлена трехсекционная коммутационная колодка с винтовыми зажимами — она впаивается в плату. Все детали схемы размещены на односторонней печатной плате из стеклотекстолита, рис. 3.15. Для увеличения плотности монтажа

часть резисторов устанавливается вертикально, а стабилитрон VD1 используется в пластмассовом корпусе. В качестве корпуса удалось найти подходящую пластмассовую коробку, рис. 3.16 (под нее и выполнена плата). Для подключения удаленного датчика к блоку охраны потребуется собрать переходной узел на транзисторе VT3, рис. 3.17. Он позволяет формировать уровень лог. “1″ для системы охраны при срабатывании датчика. При свечении светодиода HL1 в цепи питания датчика увеличивается ток. Этот ток, проходя через резистор R8, создает на нем падение напряжения, достаточное для открывания транзистора VT3.

Чувствительность транзистора устанавливается резистором R8, а резистор R7 предотвращает повреждение транзистора VT3 в случае короткого замыкания цепей питания датчика.

Можно также изготовить датчик вибрации на основе цилиндрического пьезоэлемента от головки звукоснимателя, например типа ГЗП-311, рис. 3.18. Такие звукосниматели вряд ли еще производятся, но в продаже из старых запасов пока встречаются. Головка имеет пьезоэлемент в виде трубки. Для его использования в качестве датчика потребуется минимальная доработка.

Она заключается в снятии иголки и укорачивании пластмассовых ограничительных выступов (1), как это показано на рисунке. На выступающий конец пьезоэлемента надеваем полиэтиленовую трубку соответствующего диаметра, а на ней закрепляем медную цилиндрическую втулку (2). Втулка имеет внутри центральное отверстие с резьбой М2,5 (резьба обеспечивает лучшее сцепление с полиэтиленовой трубкой, что исключит соскальзывание груза).

Так как пьезоэлемент имеет гибкое крепление, то малейшие вибрации закрепленного на нем груза (2) преобразуются в напряжение. Схема усилителя для такого датчика может быть аналогичной приведенной выше, но с небольшими изменениями, показанными на рис. 3.19.

Применение такой конструкции пьезодатчика позволяет обес печить чувствительность к колебаниям в двух плоскостях, а также не много уменьшить габариты устройства.

В качестве пьезодатчика возможно также использование пье-зоизлучателей из серии ЗП, но в этом случае чувствительность такого устройства уменьшится и срабатывать оно будет только при ударах.

В некоторых серийных импортных сигнализациях используется аналогичная конструкция датчика колебаний на основе пьезоэлемента. Отличие заключается в том, что на пьезоэлемент надета толстая селиконовая трубка, а на ней уже закреплен груз.

На рис. 3.20 для примера приведена схема так называемого “двухзонного” датчика, выполненного на основе пьезоэлемента. Такие устройства используются в некоторых импортных автомобильных системах охраны. Все устройство собрано на одной микросхеме, содержащей внутри четыре универсальных операционных усилителя.

Датчик имеет два регулятора. Резистор R2 позволяет менять общую чувствительность схемы, a R6 дает возможность устанавливать нужную постоянную времени цепи заряда конденсатора С8, что регулирует чувствительность устройства в зависимости от продолжительности и силы внешних воздействий.

При эксплуатации охраны для облегчения настройки чувствительности датчика в схеме имекУгся светодиоды HL1, HL2. По их свечению можно контролировать момент срабатывания.

Анализируя развитие схемотехники устройств защиты накала катодно-по-догревательного узла (КПУ) электронно-лучевых трубок (ЭЛТ), в основном телевизионных кинескопов, нельзя не обратить внимание на отсутствие новых технических решений в течение последних нескольких лет……..

Эквивалентное последовательное сопротивление (ЭПС или ESR) конденсатора является его важнейшим параметром и в значительной мере определяет его фильтрующие и сглаживающие свойства. Нередко причиной неработоспособности различных устройств является повышенное значение ЭПС…….

До настоящего времени автомобили “Жигули” остаются самой распространенной “иномаркой”, бегающей долгие годы по нашим дорогам. Особенно много “старушек” моделей ВАЗ 2101-2107. За свои 30 лет моя “двойка” сменила не одного…….

Датчик колебаний. Вариант 1.

Описанная ниже схема датчика механических колебаний применяется в различных цифровых устройствах охранной сигнализации автомобиля. В качестве чувствительного элемента можно использовать любой стрелочный индикатор уровня записи от какого-нибудь старенького кассетного магнитофона.

Правда, перед использованием его необходимо немного доработать:

Аккуратно по склейке вскрываем лезвием индикатор;
На кончик стрелки нанижем и закрепим кусочек трубчатого припоя длиной 4 мм, внутренность которого освобождена от флюса или канифоли.
По обеим сторонам шкалы, в качестве демпферов - ограничителей, приклеим небольшие прямоугольные кусочки поролона.
Соберем индикатор, восстановим склейку.

Таким образом, наш индикатор превратился в датчик колебаний.
Ниже приведена принципиальная схема устройства.

Здесь РА1 - микроамперметр М476/1 с утяжеленной стрелкой, он является чувствительным элементом датчика. Когда стрелка начинает колебаться – она перемещает рамку в магнитном поле, и в обмотке рамки возникает электрическое напряжение.

Сигнал с рамки датчика поступает на вход аналого-цифрового компаратора DA1, где он усиливается и приводится к цифровому стандарту. Конденсатор С2 демпфирует колебания (звон) на выходе компаратора при переключении выходного напряжения. Резистором R3 регулируется пороговое напряжение (чувствительность) датчика таким образом, чтобы он не реагировал на малые колебания кузова, не связанные со вскрытием или угоном автомобиля.

Крепление датчика производится в подкапотном пространстве таким образом, чтобы утяжеленный конец стрелки микроамперметра смотрел вниз, а ось качания располагалась вдоль автомобиля, хотя в некоторых статьях про подобные устройства ось качания располагают и поперек.

Ток, потребляемый датчиком при +Uпит =5 В, не превышает 1,5 мА.

Второй вариант датчика колебаний кузова.

Предлагаемый датчик реагирует на наклоны, качку кузова, удары и вибрацию кузова автомобиля. Этот датчик более универсален, чем штатные датчики удара автосигнализаций, которые реагируют только на удары и резкую вибрацию. Приведенный ниже вариант можно использовать вместо штатного датчика.

Как и в первом варианте в качестве чувствительного элемента используется магнитная рамка микроамперметра М476/1 контроля уровня записи кассетного магнитофона. Ее также подготавливают по вышеописанной методике (утяжеляют стрелку и наклеивают демпферы из поролона). Устанавливают в потайном месте салона автомобиля так, чтобы ось вращения рамки микроамперметра была параллельна направлению движения автомобиля, а стрелка с грузом направлена вниз.

Принципиальная электрическая схема.

В1 – микроамперметр М476/1. Полярность подключения значения не имеет. Колебания магнитного поля, наводимые в рамке микроамперметра усиливаются операционным усилителем КР140УД1208. При достижении выходного напряжения операционного усилителя порога переключения логического элемента D2.3 на выходной разъём поступает сигнал тревоги 1-го уровня, при котором "ревун" сигнализации издает короткий звук. На элемент D2.1 сигнал не проходит потому, что его часть падает на диодах VD1 и VD2, не позволяя элементу D2.1 открыться. В случае сильного раскачивания кузова автомобиля и появления на выходе операционного усилителя сигнала большой амплитуды (большого уровня), элемент D2.1 переключается, и на выходном разъёме появляется сигнал тревоги 2-го уровня, при котором "ревун" сигнализации издает длительный непрерывный звук.

Элементы R10,VD3,C2 –понижающий стабилизатор питания 9 вольт.
Резистором R2 производится настройка чувствительности датчика колебаний.
Микросхема D2 - КМОП типа К176ЛА7.

Спаренный переключатель S1 предназначен для возможного подключения к любому типу автомобильной сигнализации, как с нормально замкнутыми контактами, так и нормально разомкнутыми.

Предлагаемый датчик можно подключить не только к дополнительному разъёму, но и в параллель к штатному датчику, а также параллельно дверным выключателям освещения салона. Для этого, на выходе схемы необходимо использовать буферные транзисторные каскады.

При наличии «кнопочного» сотового телефона есть возможность сделать из него автосигнализацию. При возникновении тревожных ситуаций такое устройство будет совершать звонок на номер владельца. Иногда в функции телефона входит и отправка СМС, совершаемая по нажатию кнопки, и эту возможность тоже допустимо использовать. К самодельной сигнализации из мобильника можно даже подключить датчик удара. Схема, рассмотренная ниже, содержит один транзистор и одно контактное реле. Повторить ее сможет любой.

Особенности подключения датчиков в авто

Представьте, что при открытии двери срабатывает некая кнопка, один из контактов которой соединен с «массой». Когда дверь открыта, сигнальный провод будет находиться на «массе», а в остальное время он не подключен ни к чему.

Электрическая схема концевиков дверей

Подобных датчиков в автомобиле присутствует несколько. К ним относятся: датчики отпирания дверей, датчик капота и так далее. Допустим, управление неким модулем надо выполнять по срабатыванию любого из сигнальных контактов (схема «логическое ИЛИ»). Тогда, нужно использовать диоды.

Подключение нескольких разнородных датчиков

Подытожим то, что сказано выше. В любой цепи автомобиля всегда реализовано управление «по массе». То есть, сигнальный кабель приобретает «нулевой потенциал» в момент передачи сигнала. Максимальной силой тока, передаваемой по такому кабелю, можно считать 300 миллиампер. Выходить за этот предел нельзя!

Самостоятельное изготовление GSM-сигналки

Когда аккумулятор сотового аппарата разряжен, о возможности работы нашей мобильной сигнализации не может быть и речи. Так что, специально для имеющегося телефона нужно приобрести АЗУ (зарядное устройство на 12 Вольт). Заметим, что управление будет вестись нажатием на кнопку клавиатуры телефона. Поэтому к контактам кнопки нужно подпаять два провода.

Подпаяли шнуры к клавише «2»

Излишне напоминать здесь, что производить пайку можно тогда, когда штатный аккумулятор изъят.

Дополнительный модуль, подключаемый к телефону

Вся схема будет работать так:

  1. На разъеме телефона питание присутствует всегда, а поступает оно от АЗУ. По нажатию клавиши уже запрограммировано одно из действий: совершение звонка владельцу, отправка тревожного СМС.
  2. Некий управляющий кабель при возникновении тревожной ситуации получает «нулевой» потенциал. Время удерживания этого потенциала может быть небольшим.
  3. После шага «2» на определенное время замыкаются контакты реле. В действительности, они подключены к клавише телефона, который осуществляет вызов.

Последовательность выглядит просто. Осталось устранить одно несоответствие: потенциал «0» на выходе датчика появится и исчезнет, тогда как клавишу в состоянии «нажато» нужно удерживать долго.

Несоответствие устраняется, если реализовать и подключить несложную электрическую схему:

Реле времени, управляемое «массой»

Время замыкания контактов К1.1 регулируют подбором номинала следующих деталей: резистора R1, конденсатора C1. Чем больше номиналы, тем дольше контакты остаются замкнутыми. При подключении к источнику питания лучше использовать пред-колбу. Вместо КТ973Б можно установить КТ983А.

Заметим, что сила тока, потребляемая обмоткой реле, не должна превышать 0,5 Ампер. Впрочем, для большинства моделей 12-вольтовых реле это требование выполнено всегда. Удачной сборки!

Подключение датчика удара и наклона

На схеме в предыдущей главе показан один сигнальный датчик. Например, им может быть концевик двери. Допустим, вы хотите, чтобы управление схемой осуществлялось по нескольким каналам одновременно. Тогда, как говорилось выше, нужно использовать диоды, чтобы подключить много датчиков сразу. Но механические переключатели (концевики) можно соединять друг с другом без использования диодов. В результате должно получиться нечто подобное.

Подключаем несколько датчиков одновременно

Каждый диод должен быть рассчитан на 200-300 мА или больше.

Можно говорить о совместимости самодельной мобильной сигнализации с датчиками удара или с другими подобными устройствами. Суть в том, что к клавише телефона подходят ровно два провода, а число разных датчиков будет ограничено лишь пожеланиями и возможностями владельца.

Разъем стандартного датчика удара

В том числе, к катоду одного из слаботочных диодов легко будет подключить шнур от датчика удара, наделенного двухуровневой системой реагирования. Подключают именно «белый» шнур, а «синий» провод при этом не используется.

Так как в схеме было применено реле, ни одна из сигнальных цепей телефона не будет иметь гальванического контакта с проводом, соединенным с другими устройствами или модулями. О наличии «петель», в том числе петли с нулевым потенциалом, можете не беспокоиться – их не появится в любом случае.

Знайте, что осуществляя монтаж устройств, получающих дополнительное питание (активных датчиков), внимание надо уделять качеству подключения «силовой массы». Если контакт останется плохим, управление будет вестись с перебоями. Речь идет не о ложных срабатываниях, а, наоборот, об отсутствии вызова в предусмотренных для этого случаях. Желаем успеха.

Трудности пайки проводов в телефоне

Почти все выпускаемые промышленностью автомобильные сигнали зации имеют в своем составе датчики, которые срабатывают от различных воздействий на автомобиль. Например, существуют датчи ки удара, движения, наклона, датчики присутствия и т. д.

Многие автолюбители собирают и у с танавливают самодельные устрой ства сигнализации открывания дверей, капота и т. д. В статье “Автосигна лизация с управлением на ИК-лучах” (“Схе мотехника”, № 1/2001) было рассмотрено устройство, которое выполняет функции центрального замка автомобиля. Однако для того чтобы это устройство стало полно ценной автосигнализацией, его необходи мо дополнить соответствующими датчика ми. Стоимость готовых датчиков составля ет от 5 долларов, тогда как себестоимость самодельных датчиков удара и качания со ставляет порядка 50 рублей.

Однако не все типы датчиков могут быть изготовлены радиолюбителем средней квалификации, и поэтому в статье будут рассматриваться датчики, создание кото рых будет под силу даже начинающему ра диолюбителю.

Датчики удара и качания по конструкции можно разделить на несколько видов: с пье зоизлучателем в качестве датчика, с сис темой катушка – магнит, с использованием акселерометра.

На рис.1а показана конструкция датчи ка, чувствительным элементом которого является пьезоизлучатель. В качестве пье зоизлучателя можно использовать любой типа ЗП-3, ЗП-5 и т. п. Пьезоизлучатель жестко крепится к металлической поверх ности клеем или с помощью скобы и вин тов. При ударе по автомобилю воздействие передается на пьезоэлемент. Сигнал с пос леднего усиливается усилителем-ограни чителем, на выходе которого устанавлива ется уровень логического “0” при превы шении заданного порогового значения (ре гулировка чувствительности). Достоин ством этой конструкции является простота и дешевизна. Однако она имеет множество недостатков: регистрация только ударных Датчики движения и удара для автомобильной сигнализации Почти все выпускаемые промышленностью автомобильные сигнали зации имеют в своем составе датчики, которые срабатывают от различных воздействий на автомобиль. Например, существуют датчи ки удара, движения, наклона, датчики присутствия и т. д.




воздействий; срабатывание от громкого шума, дождя, вибрации почвы и т. п.; хрупкость датчика и сложность подбора не обходимого уровня чувствительности.

На рис. 1б показана конструкция датчи ка с пьезоэлементом и закрепленным на против него на пружине или металличес кой пластине грузом. Принцип работы этой системы основан на ударе грузом по пье зоизлучателю, когда происходит раскачи вание или удар по автомобилю. Эта конст рукция, в отличие от предыдущей, реаги рует, помимо удара, на раскачивание авто мобиля, но только в одной плоскости. Хрупкость пьезоэлемента по прежнему является слабым звеном.

На рис. 2а показана конструкция, кото рая чаще всего применяется в промышлен ных автосигнализациях. Ее основа – катуш ка и расположенный напротив магнит, ко торый крепится или на пружине или в спе циальной чаше из резины, зафиксирован ной, в свою очередь, на стойках. Принцип работы такой системы основан на возбуж дении в обмотке ЭДС индукции при коле баниях магнита относительно катушки, воз никающих при ударе, толчке или раскачи вании автомобиля. Напряжение ЭДС с ка тушки, как и в предыдущем случае, посту пает на усилитель-ограничитель с регули ровкой чувствительности. В качестве катуш ки удобно использовать обмотку реле РЭС– 6 и ему подобных.

Достоинствами этой системы являются: надежность конструкции; регистрация как ударных воздействий, так и качания авто мобиля в любых плоскостях; легкость на стройки. Недостатки: чувствительность к вибрациям почвы, недостаточная чувстви тельность по всему объему автомобиля, достаточно сложная конструкция по срав нению с пьезоизлучателем.

Однако, несмотря на все недостатки, эта конструкция получила самое широкое рас пространение, и большинство производи телей автосигнализаций предпочитают ис пользование именно такой системы. На рис. 2б представлена одна из разно видностей предыдущей конструкции. Но датчиком в ней является головка индика тора уровня от магнитофона (можно исполь зовать практически любую измерительную головку). Для этого на стрелку приклеива ется грузик (масса подбирается экспери ментально), головка закрепляется так, чтобы стрелка с грузиком находилась как можно ближе к центру шкалы. Эта конструкция имеет такие же достоинства и недостатки, что и предыдущая. Однако кроме этого су ществует еще один серьезный недостаток – регистрация воздействий только в плос кости качания стрелки.

Усилитель для датчиков можно собрать на любом операционном усилителе, одна ко необходимо учесть то, что при поступле нии сигнала с датчика на выходе должен установиться уровень порядка 0–0,3 В (ло гический “0”), т. е. усилитель должен быть совмещен с триггером Шмитта.

Усилитель должен также иметь регули ровку чувствительности для облегчения настройки (особенно в городских услови ях). При регулировке чувствительности нужно ориентироваться не на максималь ный ее уровень, а на то, чтобы ложные сра батывания происходили как можно реже.

Сегодня мы с вами поговорим о такой интересной штуке, как датчик вибрации, область ее применения зависит от вашей фантазии. Я, например, использовал его как датчик, для приклеив его к рамке, на которой установлена дверь. Теперь поговорим о самом устройстве. Схема датчика была разработана лично мной, и ее нет нигде в интернете - только на нашем сайте. Характеристики ее следующие: устройство начинает работать сразу после правильной сборки – то есть, не нуждается ни в каких настройках, которые мы с вами так не любим, чувствительность просто потрясающая - с десяти метров от него, исполняя какой нибудь танец, микроамперметр или светодиод начнет подтанцовывать вместе с вами. Вот сама схема датчика вибрации:

Микросхему LM358 использовал, так как она, на мой взгляд, является самым распространенным операционным усилителем, есть она в любом радиомагазине, и стоит копейки. В крайнем случае, ее можно выдрать из краба – универсального зарядного для аккумуляторов мобильных телефонов или из автомобильной сигнализации – там они часто встречаются в приемной части, еще можно заменить на LM324 – у нее плюс питания на четвертую ногу, а минус на одиннадцатую при этом конечно уже не соединяем восьмую и четвертую. Пьезодинамик покупаем или достаем из убитых калькуляторов, наручных часов, велосипедных пищалок и прочих пиликающих игрушек. Микроамперметр бывает в советских магнитофонах, усилителях или авометрах (древних тестерах). Пьезик можно заменить на светодиод или небольшой динамик с малым током потребления (около 20-ти миллиампер, тогда убираем R6). Резисторы R3, R5 – могут быть в пределах 1к до 3к3, главное чтоб они были одинакового номинала. Резистор R4 - влияет на чувствительность, меньше сопротивление - выше чувствительность (минимальное что я ставил 0, 33 ом – это подкрадываясь почувствует на расстоянии 5-6 метров). R1, R2 в пределах 47к … 220к тоже оба с одинаковыми номиналами. R6 как ограничение тока, подходит для микроамперметра и светодиода. Конденсаторы C1 и C2 от 1мк до 47мк. Питание датчика вибрации
возможно даже от литиевого аккумулятора 3,7 вольта, тогда для светодиода можно будет убрать R6. В принципе всё, если собрали все необходимые детали - можно начинать сборку. Собираем сначала схему датчика на ОУ и не трогаем пьезодинамик. Вариант изготовления платы смотрим здесь:

Теперь разбираемся с пьезо динамиком. У него есть середина из пьезоэлемента с напылением сверху для пайки, и пластина (обычно бронзовая или никелированное железо) на которой с одной стороны та самая середина из пьезоэлемента. Припаиваем к середине пьезоэлемента провод, другой его конец провода припаиваем к выводу 3 микросхемы, потом припаиваем пластину прямо на плату, а на противоположной от платы стороне к пьезодинамику прикрепляем пружину (для большей чувствительности) смотрим рисунок. Итак, датчик вибрации собран, можно проверять. Подключаем питание и ждем, пока пружина не успокоится. Когда на выходе будет "0” (не светится светодиод или микроамперметр показывает "0”), щелкаем пальцами или хлопаем, датчик должен отреагировать. Если все работает – отлично, если нет, проверьте, нет ли замыканий, правильно ли все соединили. Микросхема вообще должна быть рабочей, даже если вы ее выпаяли из какого нибудь устройства (на ней нет никакой нагрузки). Если интересно как этот датчик работает, читаем тут. У операционного усилителя есть два входа (один из них называют "+” другой "-”) и один выход. Если подаем на вход "+” напряжение больше чем на вход "-", на выходе имеем "+” если же наоборот на выходе будет "-". По схеме напряжение входе "+” меньше чем на входе "–" на пару милливольт и поэтому на выходе имеем "-". Теперь пьезо динамик - такая крутая вещь, что преобразует звук или вибрацию в напряжение (у меня от пьезодинамика даже светодиод светился, просто ударяя по нему карандашом), и он при вибрации увеличивает напряжение на входе "+”и, следовательно, имеем на выходе тоже "+”. Заранее благодарю за повторение моих конструкции. Автор статьи - Леша "левша", устройство испытал: АКА.

Похожие публикации